These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30418578)

  • 1. Comprehensive evaluation of RNA-seq analysis pipelines in diploid and polyploid species.
    Payá-Milans M; Olmstead JW; Nunez G; Rinehart TA; Staton M
    Gigascience; 2018 Dec; 7(12):. PubMed ID: 30418578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data.
    Chopra R; Burow G; Farmer A; Mudge J; Simpson CE; Burow MD
    PLoS One; 2014; 9(12):e115055. PubMed ID: 25551607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards an improved apple reference transcriptome using RNA-seq.
    Bai Y; Dougherty L; Xu K
    Mol Genet Genomics; 2014 Jun; 289(3):427-38. PubMed ID: 24532088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq in Nonmodel Organisms.
    Chalifa-Caspi V
    Methods Mol Biol; 2021; 2243():143-167. PubMed ID: 33606257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Software for pre-processing Illumina next-generation sequencing short read sequences.
    Chen C; Khaleel SS; Huang H; Wu CH
    Source Code Biol Med; 2014; 9():8. PubMed ID: 24955109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.
    Li B; Dewey CN
    BMC Bioinformatics; 2011 Aug; 12():323. PubMed ID: 21816040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STAble: a novel approach to de novo assembly of RNA-seq data and its application in a metabolic model network based metatranscriptomic workflow.
    Saggese I; Bona E; Conway M; Favero F; Ladetto M; Liò P; Manzini G; Mignone F
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):184. PubMed ID: 30066630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species.
    Ilut DC; Coate JE; Luciano AK; Owens TG; May GD; Farmer A; Doyle JJ
    Am J Bot; 2012 Feb; 99(2):383-96. PubMed ID: 22301896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis.
    Davidson NM; Oshlack A
    Gigascience; 2018 May; 7(5):. PubMed ID: 29722876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae).
    Ferreira de Carvalho J; Poulain J; Da Silva C; Wincker P; Michon-Coudouel S; Dheilly A; Naquin D; Boutte J; Salmon A; Ainouche M
    Heredity (Edinb); 2013 Feb; 110(2):181-93. PubMed ID: 23149455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of next generation sequencing technologies for transcriptome assembly and utility for RNA-Seq in a non-model bird.
    Finseth FR; Harrison RG
    PLoS One; 2014; 9(10):e108550. PubMed ID: 25279728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Plant Transcriptome Assembly and Annotation Using Illumina RNA-Seq Reads.
    Kerr SC; Gaiti F; Tanurdzic M
    Methods Mol Biol; 2019; 1933():265-275. PubMed ID: 30945191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species.
    Hornett EA; Wheat CW
    BMC Genomics; 2012 Aug; 13():361. PubMed ID: 22853326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping RNA-seq Reads with STAR.
    Dobin A; Gingeras TR
    Curr Protoc Bioinformatics; 2015 Sep; 51():11.14.1-11.14.19. PubMed ID: 26334920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.