These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30418747)

  • 1. Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material.
    Chen Y; Dang B; Jin C; Sun Q
    ACS Nano; 2019 Jan; 13(1):371-376. PubMed ID: 30418747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing bulk natural wood into a high-performance structural material.
    Song J; Chen C; Zhu S; Zhu M; Dai J; Ray U; Li Y; Kuang Y; Li Y; Quispe N; Yao Y; Gong A; Leiste UH; Bruck HA; Zhu JY; Vellore A; Li H; Minus ML; Jia Z; Martini A; Li T; Hu L
    Nature; 2018 Feb; 554(7691):224-228. PubMed ID: 29420466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Wooden Nacre: A High Specific Strength Engineering Material.
    Chen Y; Fu J; Dang B; Sun Q; Li H; Zhai T
    ACS Nano; 2020 Feb; 14(2):2036-2043. PubMed ID: 31934744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Mechanical Property of Laminated Electromechanical Sensors by Carbonized Nanolignocellulose/Graphene Composites.
    Chen Y; Sheng C; Dang B; Qian T; Jin C; Sun Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7344-7351. PubMed ID: 29425438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo.
    Li Z; Chen C; Mi R; Gan W; Dai J; Jiao M; Xie H; Yao Y; Xiao S; Hu L
    Adv Mater; 2020 Mar; 32(10):e1906308. PubMed ID: 31999009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material.
    Chen C; Li Z; Mi R; Dai J; Xie H; Pei Y; Li J; Qiao H; Tang H; Yang B; Hu L
    ACS Nano; 2020 May; 14(5):5194-5202. PubMed ID: 32275131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO
    Chen Y; Wang H; Dang B; Xiong Y; Yao Q; Wang C; Sun Q; Jin C
    Sci Rep; 2017 May; 7(1):1823. PubMed ID: 28500310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.
    Frey M; Widner D; Segmehl JS; Casdorff K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5030-5037. PubMed ID: 29373784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignocellulose Nanofiber-Reinforced Polystyrene Produced from Composite Microspheres Obtained in Suspension Polymerization Shows Superior Mechanical Performance.
    Ballner D; Herzele S; Keckes J; Edler M; Griesser T; Saake B; Liebner F; Potthast A; Paulik C; Gindl-Altmutter W
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13520-5. PubMed ID: 27163488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review.
    Angelova GV; Brazkova MS; Krastanov AI
    Z Naturforsch C J Biosci; 2021 Nov; 76(11-12):431-442. PubMed ID: 34252997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose-Based Hybrid Structural Material for Radiative Cooling.
    Chen Y; Dang B; Fu J; Wang C; Li C; Sun Q; Li H
    Nano Lett; 2021 Jan; 21(1):397-404. PubMed ID: 33301320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Bamboo Steel Derived from Natural Bamboo.
    Wang YY; Wang XQ; Li YQ; Huang P; Yang B; Hu N; Fu SY
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1431-1440. PubMed ID: 33356105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superstrong, Lightweight, and Exceptional Environmentally Stable SiO
    Wang YY; Li YQ; Xue SS; Zhu WB; Wang XQ; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7311-7320. PubMed ID: 35078316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable Development of Hot-Pressed All-Lignocellulose Composites-Comparing Wood Fibers and Nanofibers.
    Oliaei E; Lindström T; Berglund LA
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired High-Strength Borate Cross-Linked Microfibrillated Cellulose Composite Laminate with Self-Extinguishing Flame Retardance and Superhydrophobicity for Self-Cleaning.
    Shen H; Zheng X; Dong L; Huang D
    ACS Omega; 2023 Nov; 8(44):41458-41468. PubMed ID: 37970026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-releasing dental restorative composites containing functionalized brushite nanoparticles for improved mechanical strength.
    Rodrigues MC; Chiari MDS; Alania Y; Natale LC; Arana-Chavez VE; Meier MM; Fadel VS; Vichi FM; Hewer TLR; Braga RR
    Dent Mater; 2018 May; 34(5):746-755. PubMed ID: 29422326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of High-Performance Densified Wood via High-Pressure Steam Treatment and Hot-Pressing.
    Huang W; Jin Y; Guo Y; Deng J; Yu H; He B
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.
    Zhang YP
    J Ind Microbiol Biotechnol; 2008 May; 35(5):367-375. PubMed ID: 18180967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastrong and Bioactive Nanostructured Bio-Based Composites.
    Mittal N; Jansson R; Widhe M; Benselfelt T; Håkansson KMO; Lundell F; Hedhammar M; Söderberg LD
    ACS Nano; 2017 May; 11(5):5148-5159. PubMed ID: 28475843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.