These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30418795)

  • 1. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment.
    Tarboush AK; Ge J; Lin Z
    Math Biosci Eng; 2018 Dec; 15(6):1479-1494. PubMed ID: 30418795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.
    Lin Z; Zhu H
    J Math Biol; 2017 Dec; 75(6-7):1381-1409. PubMed ID: 28378145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-patch model for the spread of West Nile virus.
    Zhang J; Cosner C; Zhu H
    Bull Math Biol; 2018 Apr; 80(4):840-863. PubMed ID: 29492829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A discrete time west nile virus transmission model with optimal bird- and vector-specific controls.
    Malik T
    Math Biosci; 2018 Nov; 305():60-70. PubMed ID: 30171883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling West Nile virus transmission risk in Europe: effect of temperature and mosquito biotypes on the basic reproduction number.
    Vogels CBF; Hartemink N; Koenraadt CJM
    Sci Rep; 2017 Jul; 7(1):5022. PubMed ID: 28694450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spreading speed for a West Nile virus model with free boundary.
    Wang Z; Nie H; Du Y
    J Math Biol; 2019 Jul; 79(2):433-466. PubMed ID: 31016334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The backward bifurcation in compartmental models for West Nile virus.
    Wan H; Zhu H
    Math Biosci; 2010 Sep; 227(1):20-8. PubMed ID: 20576516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensemble forecast of human West Nile virus cases and mosquito infection rates.
    DeFelice NB; Little E; Campbell SR; Shaman J
    Nat Commun; 2017 Feb; 8():14592. PubMed ID: 28233783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of West nile virus transmission risk from a weather-dependent epidemiological model and a global sensitivity analysis framework.
    Kioutsioukis I; Stilianakis NI
    Acta Trop; 2019 May; 193():129-141. PubMed ID: 30844376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a climate-based ensemble prediction model for West Nile Virus infection rates in Culex mosquitoes, Suffolk County, New York.
    Little E; Campbell SR; Shaman J
    Parasit Vectors; 2016 Aug; 9(1):443. PubMed ID: 27507279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Threshold conditions for west nile virus outbreaks.
    Jiang J; Qiu Z; Wu J; Zhu H
    Bull Math Biol; 2009 Apr; 71(3):627-47. PubMed ID: 19101771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. West Nile virus and its vectors.
    Ciota AT
    Curr Opin Insect Sci; 2017 Aug; 22():28-36. PubMed ID: 28805636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. West Nile Virus Fitness Costs in Different Mosquito Species.
    Coffey LL; Reisen WK
    Trends Microbiol; 2016 Jun; 24(6):429-430. PubMed ID: 27108207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the dynamics of West Nile Virus.
    Cruz-Pacheco G; Esteva L; Montaño-Hirose JA; Vargas C
    Bull Math Biol; 2005 Nov; 67(6):1157-72. PubMed ID: 16125762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backward bifurcation and optimal control in transmission dynamics of west nile virus.
    Blayneh KW; Gumel AB; Lenhart S; Clayton T
    Bull Math Biol; 2010 May; 72(4):1006-28. PubMed ID: 20054714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology of West Nile virus across four European countries: review of weather profiles, vector population dynamics and vector control response.
    Chaskopoulou A; L'Ambert G; Petric D; Bellini R; Zgomba M; Groen TA; Marrama L; Bicout DJ
    Parasit Vectors; 2016 Sep; 9(1):482. PubMed ID: 27590848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analysis of human-animal-vector surveillance: West Nile virus infections in Austria, 2015-2016.
    Kolodziejek J; Jungbauer C; Aberle SW; Allerberger F; Bagó Z; Camp JV; Dimmel K; de Heus P; Kolodziejek M; Schiefer P; Seidel B; Stiasny K; Nowotny N
    Emerg Microbes Infect; 2018 Mar; 7(1):25. PubMed ID: 29535293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile virus epizootics in the Camargue (France) in 2015 and reinforcement of surveillance and control networks.
    Bahuon C; Marcillaud-Pitel C; Bournez L; Leblond A; Beck C; Hars J; Leparc-Goffart I; L'Ambert G; Paty MC; Cavalerie L; Daix C; Tritz P; Durand B; Zientara S; Lecollinet S
    Rev Sci Tech; 2016 Dec; 35(3):811-824. PubMed ID: 28332648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-species interactions in West Nile virus infection.
    Cruz-Pacheco G; Esteva L; Vargas C
    J Biol Dyn; 2012; 6():281-98. PubMed ID: 22873592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Integrative Eco-Epidemiological Analysis of West Nile Virus Transmission.
    Tran A; L'Ambert G; Balança G; Pradier S; Grosbois V; Balenghien T; Baldet T; Lecollinet S; Leblond A; Gaidet-Drapier N
    Ecohealth; 2017 Sep; 14(3):474-489. PubMed ID: 28584951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.