These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30418903)

  • 21. A local fast marching-based diffusion tensor image registration algorithm by simultaneously considering spatial deformation and tensor orientation.
    Xue Z; Li H; Guo L; Wong ST
    Neuroimage; 2010 Aug; 52(1):119-30. PubMed ID: 20382233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 100 mm dynamic stencils pattern sub-micrometre structures.
    Savu V; Xie S; Brugger J
    Nanoscale; 2011 Jul; 3(7):2739-42. PubMed ID: 21674118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.
    Mattila KK; Hegele Júnior LA; Philippi PC
    ScientificWorldJournal; 2014; 2014():142907. PubMed ID: 24688360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploiting Computation Reuse for Stencil Accelerators.
    Chi Y; Cong J
    Proc Des Autom Conf; 2020 Jul; 2020():. PubMed ID: 33796879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Reconstruction of Neural Trees Using Front Re-initialization.
    Mukherjee A; Stepanyants A
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8314():. PubMed ID: 24386539
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafine Pitch Stencil Printing of Liquid Metal Alloys.
    Lazarus N; Bedair SS; Kierzewski IM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1178-1182. PubMed ID: 28058840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Acceleration of Stencil Applications through In-Memory Computing.
    Yantır HE; Eltawil AM; Salama KN
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32604821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stochastic modeling of polarized light scattering using a Monte Carlo based stencil method.
    Sormaz M; Stamm T; Jenny P
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1100-10. PubMed ID: 20448777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Positivity-Preserving Finite Volume Scheme for Nonequilibrium Radiation Diffusion Equations on Distorted Meshes.
    Yang D; Peng G; Gao Z
    Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous consideration of spatial deformation and tensor orientation in diffusion tensor image registration using local fast marching patterns.
    Li H; Xue Z; Guo L; Wong ST
    Inf Process Med Imaging; 2009; 21():63-75. PubMed ID: 19694253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains.
    Yurtoglu M; Carton M; Storti D
    J Comput Inf Sci Eng; 2018 Jun; 18(2):0210131-210139. PubMed ID: 29743823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method.
    Chen L; Succi S; Cai X; Schaefer L
    Phys Rev E; 2020 Jun; 101(6-1):063301. PubMed ID: 32688570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fast marching level set method for monotonically advancing fronts.
    Sethian JA
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1591-5. PubMed ID: 11607632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three ways to lattice Boltzmann: a unified time-marching picture.
    Ubertini S; Asinari P; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016311. PubMed ID: 20365464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and Static Hamilton-Jacobi Equations.
    Cancela B; Alonso-Betanzos A
    IEEE Trans Pattern Anal Mach Intell; 2021 Nov; 43(11):4177-4188. PubMed ID: 32396072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.
    Hyun WJ; Secor EB; Hersam MC; Frisbie CD; Francis LF
    Adv Mater; 2015 Jan; 27(1):109-15. PubMed ID: 25377870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating Machine Learning Techniques for Predicting the Process Characteristics of Stencil Printing.
    Martinek P; Illés B; Codreanu N; Krammer O
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local algorithm for computing complex travel time based on the complex eikonal equation.
    Huang X; Sun J; Sun Z
    Phys Rev E; 2016 Apr; 93():043307. PubMed ID: 27176428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice models for large-scale simulations of coherent wave scattering.
    Wang S; Teixeira FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016701. PubMed ID: 14995749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.