These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30418915)

  • 1. Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems.
    Bahadorinejad A; Imani M; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1105-1114. PubMed ID: 30418915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Fault Detection and Diagnosis in Transcriptional Circuits Using Next-Generation Sequencing.
    Bahadorinejad A; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):516-525. PubMed ID: 29610100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
    Mcclenny LD; Imani M; Braga-Neto UM
    BMC Bioinformatics; 2017 Nov; 18(1):519. PubMed ID: 29178844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty.
    Hajiramezanali E; Imani M; Braga-Neto U; Qian X; Dougherty ER
    BMC Genomics; 2019 Jun; 20(Suppl 6):435. PubMed ID: 31189480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fault detection and therapeutic intervention in gene regulatory networks using SAT solvers.
    Deshpande A; Layek RK
    Biosystems; 2019 May; 179():55-62. PubMed ID: 30831179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning.
    Imani M; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1250-1261. PubMed ID: 29993697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of temporal correlations between genes in models of noisy and noiseless gene networks.
    Ribeiro AS; Lloyd-Price J; Chowdhury S; Yli-Harja O
    Biosystems; 2011; 104(2-3):136-44. PubMed ID: 21356270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PALLAS: Penalized mAximum LikeLihood and pArticle Swarms for Inference of Gene Regulatory Networks From Time Series Data.
    Tan Y; Neto FBL; Neto UB
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1807-1816. PubMed ID: 33170782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taming Asynchrony for Attractor Detection in Large Boolean Networks.
    Mizera A; Pang J; Qu H; Yuan Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):31-42. PubMed ID: 29994682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.
    He Q; Xia Z; Lin B
    J Theor Biol; 2016 Nov; 408():137-144. PubMed ID: 27524645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Learning and Filtering Approach for Fault Diagnosis of a Class of Nonlinear Dynamical Systems.
    Keliris C; Polycarpou MM; Parisini T
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):988-1004. PubMed ID: 26863672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.
    Ding B; Fang H
    ISA Trans; 2017 May; 68():327-334. PubMed ID: 28372799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of Model Parameters Using Particle Filter Algorithm and Copula Distributions.
    Deng Z; Zhang X; Tian T
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1231-1240. PubMed ID: 30418916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P_UNSAT approach of attractor calculation for Boolean gene regulatory networks.
    He Q; Xia Z; Lin B
    J Theor Biol; 2018 Jun; 447():171-177. PubMed ID: 29605228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational algebra approach to the reverse engineering of gene regulatory networks.
    Laubenbacher R; Stigler B
    J Theor Biol; 2004 Aug; 229(4):523-37. PubMed ID: 15246788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.
    Antoneli F; Ferreira RC; Briones MR
    Math Biosci; 2016 Jun; 276():82-100. PubMed ID: 27036626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing seed genes from time series data and thresholded Boolean networks with perturbation.
    Higa CH; Andrade TP; Hashimoto RF
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):37-49. PubMed ID: 23702542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling gene and protein regulatory networks with answer set programming.
    Fayruzov T; Janssen J; Vermeir D; Cornelis C; De Cock M
    Int J Data Min Bioinform; 2011; 5(2):209-29. PubMed ID: 21544955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boolean networks with multiexpressions and parameters.
    Zou YM
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):584-92. PubMed ID: 24091393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.