BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30418918)

  • 1. A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
    Kim SJ; Han SH; Cha JH; Liu L; Yao L; Gao Y; Je M
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):1-14. PubMed ID: 30418918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-power programmable neural spike detection channel with embedded calibration and data compression.
    Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural recording front-end IC using action potential detection and analog buffer with digital delay for data compression.
    Liu L; Yao L; Zou X; Goh WL; Je M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():747-50. PubMed ID: 24109795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wide Dynamic Range Neural Data Acquisition System With High-Precision Delta-Sigma ADC and On-Chip EC-PC Spike Processor.
    Xu J; Nguyen AT; Wu T; Zhao W; Luu DK; Yang Z
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):425-440. PubMed ID: 32031949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials.
    Mollazadeh M; Murari K; Cauwenberghs G; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2741-4. PubMed ID: 19163272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 64-Channel Versatile Neural Recording SoC With Activity-Dependent Data Throughput.
    Liu Y; Luan S; Williams I; Rapeaux A; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1344-1355. PubMed ID: 29293425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter.
    Chae MS; Yang Z; Yuce MR; Hoang L; Liu W
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):312-21. PubMed ID: 19435684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquiring high-rate neural spike data with hardware-constrained embedded sensors.
    Farshchi S; Pesterev A; Ho WL; Judy JW
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():903-7. PubMed ID: 17945608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A closed-loop compressive-sensing-based neural recording system.
    Zhang J; Mitra S; Suo Y; Cheng A; Xiong T; Michon F; Welkenhuysen M; Kloosterman F; Chin PS; Hsiao S; Tran TD; Yazicioglu F; Etienne-Cummings R
    J Neural Eng; 2015 Jun; 12(3):036005. PubMed ID: 25874929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 10.8 µW Neural Signal Recorder and Processor With Unsupervised Analog Classifier for Spike Sorting.
    Hao H; Chen J; Richardson A; Van der Spiegel J; Aflatouni F
    IEEE Trans Biomed Circuits Syst; 2021 Apr; 15(2):351-364. PubMed ID: 33909570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Threshold Neural Spike Detector Using Stationary Wavelet Transform in CMOS.
    Yang Y; Boling CS; Kamboh AM; Mason AJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):946-55. PubMed ID: 25955990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power-Efficient LFP-Adaptive Dynamic Zoom-and-Track Incremental ΔΣ Front-End for Dual-Band Subcortical Recordings.
    Oh S; Song H; Slager N; Ruiz JRL; Park SY; Yoon E
    IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):741-753. PubMed ID: 37490369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 0.7 V, 40 nW Compact, Current-Mode Neural Spike Detector in 65 nm CMOS.
    Yao E; Chen Y; Basu A
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):309-18. PubMed ID: 26168445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Time-Domain Analog Spatial Compressed Sensing Encoder for Multi-Channel Neural Recording.
    Okazawa T; Akita I
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29324675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A digitally assisted, signal folding neural recording amplifier.
    Chen Y; Basu A; Liu L; Zou X; Rajkumar R; Dawe GS; Je M
    IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):528-42. PubMed ID: 25073128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated power, area and noise efficient AFE for large scale multichannel neural recording systems.
    Krishnan K A; Farshchi S; Judy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2649-52. PubMed ID: 25570535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new architecture for neural signal amplification in implantable brain machine interfaces.
    ur Rehman S; Kamboh AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2744-7. PubMed ID: 24110295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 515 nW, 0-18 dB Programmable Gain Analog-to-Digital Converter for In-Channel Neural Recording Interfaces.
    Rodriguez-Perez A; Delgado-Restituto M; Medeiro F
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):358-70. PubMed ID: 23899652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analog frontend for multichannel neuronal recording system with spike and LFP separation.
    Perelman Y; Ginosar R
    J Neurosci Methods; 2006 May; 153(1):21-6. PubMed ID: 16337276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.