These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30419022)

  • 1. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast.
    Rogers DW; McConnell E; Ono J; Greig D
    PLoS Biol; 2018 Nov; 16(11):e2005066. PubMed ID: 30419022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking a species barrier by enabling hybrid recombination.
    Bozdag GO; Ono J; Denton JA; Karakoc E; Hunter N; Leu JY; Greig D
    Curr Biol; 2021 Feb; 31(4):R180-R181. PubMed ID: 33621502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the contributions of chromosome segregation errors and aneuploidy to Saccharomyces hybrid sterility.
    Boynton PJ; Janzen T; Greig D
    Yeast; 2018 Jan; 35(1):85-98. PubMed ID: 28967670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meiotic recombination in RAD54 mutants of Saccharomyces cerevisiae.
    Schmuckli-Maurer J; Heyer WD
    Chromosoma; 2000; 109(1-2):86-93. PubMed ID: 10855498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid.
    Hunter N; Chambers SR; Louis EJ; Borts RH
    EMBO J; 1996 Apr; 15(7):1726-33. PubMed ID: 8612597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centromere mapping functions for aneuploid meiotic products: Analysis of rec8, rec10 and rec11 mutants of the fission yeast Schizosaccharomyces pombe.
    Krawchuk MD; Wahls WP
    Genetics; 1999 Sep; 153(1):49-55. PubMed ID: 10471699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Approach to Estimating Nondisjunction Frequency in Saccharomyces cerevisiae.
    Chu DB; Burgess SM
    G3 (Bethesda); 2016 Jan; 6(3):669-82. PubMed ID: 26747203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of the Saccharomyces cerevisiae RecQ helicase SGS1 in meiotic genome surveillance.
    Amin AD; Chaix AB; Mason RP; Badge RM; Borts RH
    PLoS One; 2010 Nov; 5(11):e15380. PubMed ID: 21085703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of roles of Zip1 in meiosis revealed in heterozygous mutants of Saccharomyces cerevisiae.
    Klutstein M; Xaver M; Shemesh R; Zenvirth D; Klein F; Simchen G
    Mol Genet Genomics; 2009 Nov; 282(5):453-62. PubMed ID: 19714362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of
    Gregorova S; Gergelits V; Chvatalova I; Bhattacharyya T; Valiskova B; Fotopulosova V; Jansa P; Wiatrowska D; Forejt J
    Elife; 2018 Mar; 7():. PubMed ID: 29537370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting spore-autonomous fluorescent protein expression to quantify meiotic chromosome behaviors in Saccharomyces cerevisiae.
    Thacker D; Lam I; Knop M; Keeney S
    Genetics; 2011 Oct; 189(2):423-39. PubMed ID: 21840861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.
    Chambers SR; Hunter N; Louis EJ; Borts RH
    Mol Cell Biol; 1996 Nov; 16(11):6110-20. PubMed ID: 8887641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.
    Balcova M; Faltusova B; Gergelits V; Bhattacharyya T; Mihola O; Trachtulec Z; Knopf C; Fotopulosova V; Chvatalova I; Gregorova S; Forejt J
    PLoS Genet; 2016 Apr; 12(4):e1005906. PubMed ID: 27104744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in crossover frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccharomyces cerevisiae.
    Krishnaprasad GN; Anand MT; Lin G; Tekkedil MM; Steinmetz LM; Nishant KT
    Genetics; 2015 Feb; 199(2):399-412. PubMed ID: 25467183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation.
    Watt PM; Louis EJ; Borts RH; Hickson ID
    Cell; 1995 Apr; 81(2):253-60. PubMed ID: 7736577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of centromere alignment in meiosis I segregation of homologous chromosomes in Saccharomyces cerevisiae.
    Guerra CE; Kaback DB
    Genetics; 1999 Dec; 153(4):1547-60. PubMed ID: 10581265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Saccharomyces paradox: chromosomes from different species are incompatible because of anti-recombination, not because of differences in number or arrangement.
    Ono J; Greig D
    Curr Genet; 2020 Jun; 66(3):469-474. PubMed ID: 31745570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating Crossover Frequency and Interference for Obligate Crossovers in
    Chakraborty P; Pankajam AV; Lin G; Dutta A; Krishnaprasad GN; Tekkedil MM; Shinohara A; Steinmetz LM; Nishant KT
    G3 (Bethesda); 2017 May; 7(5):1511-1524. PubMed ID: 28315832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of MAD1, MAD2 and MAD3 in meiotic progression and the segregation of nonexchange chromosomes.
    Cheslock PS; Kemp BJ; Boumil RM; Dawson DS
    Nat Genet; 2005 Jul; 37(7):756-60. PubMed ID: 15951820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis.
    Jessop L; Lichten M
    Mol Cell; 2008 Aug; 31(3):313-23. PubMed ID: 18691964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.