These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 30419062)

  • 1. Association of specific gene mutations derived from machine learning with survival in lung adenocarcinoma.
    Cho HJ; Lee S; Ji YG; Lee DH
    PLoS One; 2018; 13(11):e0207204. PubMed ID: 30419062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies.
    Li Y; Ge D; Gu J; Xu F; Zhu Q; Lu C
    BMC Cancer; 2019 Sep; 19(1):886. PubMed ID: 31488089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated PHD2 expression might serve as a valuable biomarker of poor prognosis in lung adenocarcinoma, but no lung squamous cell carcinoma.
    Xu XL; Gong Y; Zhao DP
    Eur Rev Med Pharmacol Sci; 2018 Dec; 22(24):8731-8739. PubMed ID: 30575913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genomic alterations of lung adenocarcinoma and lung squamous cell carcinoma can explain the differences of their overall survival rates.
    Meng F; Zhang L; Ren Y; Ma Q
    J Cell Physiol; 2019 Jul; 234(7):10918-10925. PubMed ID: 30549039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes.
    Isaeva OI; Sharonov GV; Serebrovskaya EO; Turchaninova MA; Zaretsky AR; Shugay M; Chudakov DM
    J Immunother Cancer; 2019 Oct; 7(1):279. PubMed ID: 31665076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ten-gene signature-based risk assessment model predicts the prognosis of lung adenocarcinoma.
    Jiang H; Xu S; Chen C
    BMC Cancer; 2020 Aug; 20(1):782. PubMed ID: 32819300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying the miRNA signature associated with survival time in patients with lung adenocarcinoma using miRNA expression profiles.
    Yerukala Sathipati S; Ho SY
    Sci Rep; 2017 Aug; 7(1):7507. PubMed ID: 28790336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonnegative matrix factorization-based bioinformatics analysis reveals that TPX2 and SELENBP1 are two predictors of the inner sub-consensuses of lung adenocarcinoma.
    Wang H; Wang X; Xu L; Cao H; Zhang J
    Cancer Med; 2021 Dec; 10(24):9058-9077. PubMed ID: 34734491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of clinical value and potential mechanism of MTFR2 in lung adenocarcinoma via bioinformatics.
    Chen C; Tang Y; Qu WD; Han X; Zuo JB; Cai QY; Xu G; Song YX; Ke XX
    BMC Cancer; 2021 May; 21(1):619. PubMed ID: 34039308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of nine microRNAs as potential biomarkers for lung adenocarcinoma.
    Ren ZP; Hou XB; Tian XD; Guo JT; Zhang LB; Xue ZQ; Deng JQ; Zhang SW; Pan JY; Chu XY
    FEBS Open Bio; 2019 Feb; 9(2):315-327. PubMed ID: 30761256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. USP4 expression independently predicts favorable survival in lung adenocarcinoma.
    Zhong M; Jiang Q; Jin R
    IUBMB Life; 2018 Jul; 70(7):670-677. PubMed ID: 29667299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of diagnostic DNA methylation biomarkers specific for early-stage lung adenocarcinoma.
    Cai Q; Zhang P; He B; Zhao Z; Zhang Y; Peng X; Xie H; Wang X
    Cancer Genet; 2020 Aug; 246-247():1-11. PubMed ID: 32805686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematical identifications of prognostic meaningful lung adenocarcinoma subtypes and the underlying mutational and expressional characters.
    Lv Z; Lei T
    BMC Cancer; 2020 Jan; 20(1):56. PubMed ID: 31987030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide isoform-level analysis reveals tumor-specific isoforms for lung adenocarcinoma diagnosis and prognosis.
    Zhuhong H; Zhenyu B; Xiangyuan C; Tingzhen X; Libin S
    Cancer Genet; 2019 Jan; 230():58-65. PubMed ID: 30470588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating genetic mutations and expression profiles for survival prediction of lung adenocarcinoma.
    Song Y; Chen D; Zhang X; Luo Y; Li S
    Thorac Cancer; 2019 May; 10(5):1220-1228. PubMed ID: 30993904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response.
    Zhang L; Zhang X; Guan M; Zeng J; Yu F; Lai F
    Respir Res; 2024 May; 25(1):206. PubMed ID: 38745285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma.
    Song Q; Shang J; Yang Z; Zhang L; Zhang C; Chen J; Wu X
    J Transl Med; 2019 Mar; 17(1):70. PubMed ID: 30832680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune-related eight-lncRNA signature for improving prognosis prediction of lung adenocarcinoma.
    Chen Y; Zhang X; Li J; Zhou M
    J Clin Lab Anal; 2021 Nov; 35(11):e24018. PubMed ID: 34550610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma.
    Jin CY; Du L; Nuerlan AH; Wang XL; Yang YW; Guo R
    Aging (Albany NY); 2020 Dec; 13(3):3518-3535. PubMed ID: 33411689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoform specific gene expression analysis of KRAS in the prognosis of lung adenocarcinoma patients.
    Yang IS; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):40. PubMed ID: 29504894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.