These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 30419181)

  • 21. Quantitation of progenitor cell populations and growth factors after bone marrow aspirate concentration.
    Schäfer R; DeBaun MR; Fleck E; Centeno CJ; Kraft D; Leibacher J; Bieback K; Seifried E; Dragoo JL
    J Transl Med; 2019 Apr; 17(1):115. PubMed ID: 30961655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration.
    Hegde V; Shonuga O; Ellis S; Fragomen A; Kennedy J; Kudryashov V; Lane JM
    J Orthop Trauma; 2014 Oct; 28(10):591-8. PubMed ID: 24694554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenotypic Characterization of Bone Marrow Mononuclear Cells and Derived Stromal Cell Populations from Human Iliac Crest, Vertebral Body and Femoral Head.
    Herrmann M; Hildebrand M; Menzel U; Fahy N; Alini M; Lang S; Benneker L; Verrier S; Stoddart MJ; Bara JJ
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31337109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proliferative and osteogenic differentiation capacity of mesenchymal stromal cells: Influence of harvesting site and donor age.
    Prall WC; Saller MM; Scheumaier A; Tucholski T; Taha S; Böcker W; Polzer H
    Injury; 2018 Aug; 49(8):1504-1512. PubMed ID: 29941285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertebral body versus iliac crest bone marrow as a source of multipotential stromal cells: Comparison of processing techniques, tri-lineage differentiation and application on a scaffold for spine fusion.
    Fragkakis EM; El-Jawhari JJ; Dunsmuir RA; Millner PA; Rao AS; Henshaw KT; Pountos I; Jones E; Giannoudis PV
    PLoS One; 2018; 13(5):e0197969. PubMed ID: 29795650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease.
    Veronesi F; Giavaresi G; Tschon M; Borsari V; Nicoli Aldini N; Fini M
    Stem Cells Dev; 2013 Jan; 22(2):181-92. PubMed ID: 23030230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone.
    de Girolamo L; Bertolini G; Cervellin M; Sozzi G; Volpi P
    Injury; 2010 Nov; 41(11):1172-7. PubMed ID: 20934693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.
    Cotter EJ; Wang KC; Yanke AB; Chubinskaya S
    Cartilage; 2018 Apr; 9(2):161-170. PubMed ID: 29126349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells.
    Chong PP; Selvaratnam L; Abbas AA; Kamarul T
    J Orthop Res; 2012 Apr; 30(4):634-42. PubMed ID: 21922534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CD45lowCD271high Cell Prevalence in Bone Marrow Samples May Provide a Useful Measurement of the Bone Marrow Quality for Cartilage and Bone Regenerative Therapy.
    El-Jawhari JJ; Cuthbert R; McGonagle D; Jones E; Giannoudis PV
    J Bone Joint Surg Am; 2017 Aug; 99(15):1305-1313. PubMed ID: 28763416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Donor age effects on in vitro chondrogenic and osteogenic differentiation performance of equine bone marrow- and adipose tissue-derived mesenchymal stromal cells.
    Bagge J; Berg LC; Janes J; MacLeod JN
    BMC Vet Res; 2022 Nov; 18(1):388. PubMed ID: 36329434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amniotic Mesenchymal Stromal Cells Exhibit Preferential Osteogenic and Chondrogenic Differentiation and Enhanced Matrix Production Compared With Adipose Mesenchymal Stromal Cells.
    Topoluk N; Hawkins R; Tokish J; Mercuri J
    Am J Sports Med; 2017 Sep; 45(11):2637-2646. PubMed ID: 28541092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation.
    Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G
    Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system.
    Li JW; Guo XL; He CL; Tuo YH; Wang Z; Wen J; Jin D
    Chin Med J (Engl); 2011 Oct; 124(19):3080-6. PubMed ID: 22040560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1.
    Battula VL; Treml S; Bareiss PM; Gieseke F; Roelofs H; de Zwart P; Müller I; Schewe B; Skutella T; Fibbe WE; Kanz L; Bühring HJ
    Haematologica; 2009 Feb; 94(2):173-84. PubMed ID: 19066333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties.
    Kuçi S; Kuçi Z; Kreyenberg H; Deak E; Pütsch K; Huenecke S; Amara C; Koller S; Rettinger E; Grez M; Koehl U; Latifi-Pupovci H; Henschler R; Tonn T; von Laer D; Klingebiel T; Bader P
    Haematologica; 2010 Apr; 95(4):651-9. PubMed ID: 20179086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of CD271(+) cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow.
    Poloni A; Maurizi G; Rosini V; Mondini E; Mancini S; Discepoli G; Biasio S; Battaglini G; Felicetti S; Berardinelli E; Serrani F; Leoni P
    Cytotherapy; 2009; 11(2):153-62. PubMed ID: 19301169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of CD271 enrichment in the isolation of mesenchymal stromal cells from umbilical cord blood.
    Attar A; Ghalyanchi Langeroudi A; Vassaghi A; Ahrari I; Maharlooei MK; Monabati A
    Cell Biol Int; 2013 Sep; 37(9):1010-5. PubMed ID: 23619775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential.
    Stüdle C; Occhetta P; Geier F; Mehrkens A; Barbero A; Martin I
    Stem Cells Transl Med; 2019 Feb; 8(2):194-204. PubMed ID: 30676001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CD271 as a marker for mesenchymal stem cells in bone marrow versus umbilical cord blood.
    Watson JT; Foo T; Wu J; Moed BR; Thorpe M; Schon L; Zhang Z
    Cells Tissues Organs; 2013; 197(6):496-504. PubMed ID: 23689142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.