BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30419219)

  • 1. Altered electrical properties with controlled copper doping in ZnO nanoparticles infers their cytotoxicity in macrophages by ROS induction and apoptosis.
    Das BK; Verma SK; Das T; Panda PK; Parashar K; Suar M; Parashar SKS
    Chem Biol Interact; 2019 Jan; 297():141-154. PubMed ID: 30419219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of low levels of palmitate on toxicity of ZnO nanoparticles to THP-1 macrophages.
    Jiang Q; Li X; Cheng S; Gu Y; Chen G; Shen Y; Xie Y; Cao Y
    Environ Toxicol Pharmacol; 2016 Dec; 48():103-109. PubMed ID: 27770658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, structural, molecular docking, and in vitro biological activities of Cu-doped ZnO nanomaterials.
    El-Sayed AF; Aboulthana WM; Sherief MA; El-Bassyouni GT; Mousa SM
    Sci Rep; 2024 Apr; 14(1):9027. PubMed ID: 38641640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles.
    Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y
    Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis.
    Verma SK; Panda PK; Jha E; Suar M; Parashar SKS
    Sci Rep; 2017 Oct; 7(1):13909. PubMed ID: 29066782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.
    Akhtar MJ; Alhadlaq HA; Alshamsan A; Majeed Khan MA; Ahamed M
    Sci Rep; 2015 Sep; 5():13876. PubMed ID: 26347142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles.
    Sangeetha R; Muthukumaran S; Ashokkumar M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 144():1-7. PubMed ID: 25748587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals.
    Verma SK; Jha E; Panda PK; Das JK; Thirumurugan A; Suar M; Parashar S
    Nanomedicine (Lond); 2018 Jan; 13(1):43-68. PubMed ID: 29173091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on Cu and Ag doped ZnO nanoparticles for the photocatalytic degradation of brilliant green dye: synthesis and characterization.
    Gnanaprakasam A; Sivakumar VM; Thirumarimurugan M
    Water Sci Technol; 2016 Sep; 74(6):1426-1435. PubMed ID: 27685972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles.
    Lu S; Zhang W; Zhang R; Liu P; Wang Q; Shang Y; Wu M; Donaldson K; Wang Q
    Part Fibre Toxicol; 2015 Mar; 12():5. PubMed ID: 25888760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.
    O'Keefe SJ; Feltis BN; Piva TJ; Turney TW; Wright PF
    Nanotoxicology; 2016 Nov; 10(9):1287-96. PubMed ID: 27345703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles.
    Naserian F; Mesgar AS
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112729. PubMed ID: 35907356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic, optical and magnetic properties of Cu-doped ZnO, a possible system for eco-friendly and energy-efficient spintronic applications.
    Gora MK; Kumar A; Kumar S; Maheshwari PK; Patidar D; Dolia SN; Singhal RK
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):98632-98646. PubMed ID: 36063267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.
    Thurber A; Wingett DG; Rasmussen JW; Layne J; Johnson L; Tenne DA; Zhang J; Hanna CB; Punnoose A
    Nanotoxicology; 2012 Jun; 6(4):440-52. PubMed ID: 21635174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute exposure to ZnO nanoparticles induces autophagic immune cell death.
    Johnson BM; Fraietta JA; Gracias DT; Hope JL; Stairiker CJ; Patel PR; Mueller YM; McHugh MD; Jablonowski LJ; Wheatley MA; Katsikis PD
    Nanotoxicology; 2015; 9(6):737-48. PubMed ID: 25378273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria.
    Jan T; Iqbal J; Ismail M; Zakaullah M; Naqvi SH; Badshah N
    Int J Nanomedicine; 2013; 8():3679-87. PubMed ID: 24109181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption-oxidation mechanism for the removal of arsenic (III) using Cu-doped ZnO in an alkaline medium.
    Gyrdasova ОI; Pasechnik LA; Krasil'nikov VN; Gavrilova TP; Yatsyk IV; Kuznetsova YV; Kalinkin MO; Kuznetsov MV
    Water Environ Res; 2023 Dec; 95(12):e10956. PubMed ID: 38115184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.
    Naatz H; Lin S; Li R; Jiang W; Ji Z; Chang CH; Köser J; Thöming J; Xia T; Nel AE; Mädler L; Pokhrel S
    ACS Nano; 2017 Jan; 11(1):501-515. PubMed ID: 28026936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.
    Maleki A; Safari M; Shahmoradi B; Zandsalimi Y; Daraei H; Gharibi F
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16875-80. PubMed ID: 26104905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO
    Ahmad J; Siddiqui MA; Akhtar MJ; Alhadlaq HA; Alshamsan A; Khan ST; Wahab R; Al-Khedhairy AA; Al-Salim A; Musarrat J; Saquib Q; Fareed M; Ahamed M
    Hum Exp Toxicol; 2018 May; 37(5):496-507. PubMed ID: 28621211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.