These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 30419460)
1. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Guan CY; Tseng YH; Tsang DCW; Hu A; Yu CP J Hazard Mater; 2019 Mar; 365():137-145. PubMed ID: 30419460 [TBL] [Abstract][Full Text] [Related]
2. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils. Guan CY; Hu A; Yu CP Sci Total Environ; 2019 Jun; 670():585-594. PubMed ID: 30909036 [TBL] [Abstract][Full Text] [Related]
3. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells. Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848 [TBL] [Abstract][Full Text] [Related]
4. Cr(VI) removal from soils and groundwater using an integrated adsorption and microbial fuel cell (A-MFC) technology. Zhang T; Hu L; Zhang M; Jiang M; Fiedler H; Bai W; Wang X; Zhang D; Li Z Environ Pollut; 2019 Sep; 252(Pt B):1399-1405. PubMed ID: 31260939 [TBL] [Abstract][Full Text] [Related]
5. Preparation of PANI-SA/CF anode to enhance the remediation and power generation capabilities of plant microbial fuel cells for chromium contaminated soil. Fan L; Feng W Bioprocess Biosyst Eng; 2024 Apr; 47(4):509-518. PubMed ID: 38492005 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of plant microbial fuel cells for urban green roofs in a subtropical metropolis. Guan CY; Yu CP Sci Total Environ; 2021 Apr; 765():142786. PubMed ID: 33572039 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820 [TBL] [Abstract][Full Text] [Related]
8. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production. Mu C; Wang L; Wang L Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498 [TBL] [Abstract][Full Text] [Related]
9. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
10. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Olson KR; Herman DJ; Sutton SR; Lanzirotti A J Environ Qual; 2003; 32(5):1641-9. PubMed ID: 14535304 [TBL] [Abstract][Full Text] [Related]
11. Wood carbon electrode in microbial fuel cell enhances chromium reduction and bioelectricity generation. Ni H; Khan A; Yang Z; Gong Y; Ali G; Liu P; Chen F; Li X Environ Sci Pollut Res Int; 2022 Feb; 29(9):13709-13719. PubMed ID: 34595714 [TBL] [Abstract][Full Text] [Related]
12. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. Song TS; Jin Y; Bao J; Kang D; Xie J J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Huang L; Chen J; Quan X; Yang F Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142 [TBL] [Abstract][Full Text] [Related]
14. Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system. Shi Y; Liu Q; Wu G; Zhao S; Li Y; You S; Huang G Ecotoxicol Environ Saf; 2024 Jun; 277():116373. PubMed ID: 38653023 [TBL] [Abstract][Full Text] [Related]
15. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. Beretta G; Sangalli M; Sezenna E; Tofalos AE; Franzetti A; Saponaro S Integr Environ Assess Manag; 2024 Nov; 20(6):2033-2049. PubMed ID: 38953765 [TBL] [Abstract][Full Text] [Related]
16. Effects of Hydraulic Retention Time on Removal of Cr (VI) and p-Chlorophenol and Electricity Generation in Li T; Yang P; Yan J; Chen M; You S; Bai J; Yu G; Ullah H; Chen J; Lin H Molecules; 2024 Oct; 29(19):. PubMed ID: 39407701 [TBL] [Abstract][Full Text] [Related]
17. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Wang G; Huang L; Zhang Y Biotechnol Lett; 2008 Nov; 30(11):1959-66. PubMed ID: 18612596 [TBL] [Abstract][Full Text] [Related]
18. Bioelectrochemical remediation of Cr(VI)/Cd(II)-contaminated soil in bipolar membrane microbial fuel cells. Wang H; Zhang H; Zhang X; Li Q; Cheng C; Shen H; Zhang Z Environ Res; 2020 Jul; 186():109582. PubMed ID: 32361081 [TBL] [Abstract][Full Text] [Related]
19. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments. Turick CE; Apel WA; Carmiol NS Appl Microbiol Biotechnol; 1996 Jan; 44(5):683-8. PubMed ID: 8703437 [TBL] [Abstract][Full Text] [Related]
20. Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. Fukuda T; Ishino Y; Ogawa A; Tsutsumi K; Morita H J Gen Appl Microbiol; 2008 Oct; 54(5):295-303. PubMed ID: 19029771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]