BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30419564)

  • 41. Is the Da Vinci Xi system a real improvement for oncologic transoral robotic surgery? A systematic review of the literature.
    Fiacchini G; Vianini M; Dallan I; Bruschini L
    J Robot Surg; 2021 Feb; 15(1):1-12. PubMed ID: 32749569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finding/identifying primaries with neck disease (FIND) clinical trial protocol: a study integrating transoral robotic surgery, histopathological localisation and tailored deintensification of radiotherapy for unknown primary and small oropharyngeal head and neck squamous cell carcinoma.
    de Almeida JR; Noel CW; Veigas M; Martino R; Chepeha DB; Bratman SV; Goldstein DP; Hansen AR; Yu E; Metser U; Weinreb I; Perez-Ordonez B; Xu W; Kim J
    BMJ Open; 2019 Dec; 9(12):e035431. PubMed ID: 31892671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transoral robotic surgery for head and neck carcinomas.
    Hans S; Badoual C; Gorphe P; Brasnu D
    Eur Arch Otorhinolaryngol; 2012 Aug; 269(8):1979-84. PubMed ID: 22143583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transoral Robotic Surgery for Oropharyngeal Cancer.
    Paleri V; Fox H; Winter S
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):156-170. PubMed ID: 30016769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transoral robotic surgery for sleep apnea in children: Is it effective?
    Thottam PJ; Govil N; Duvvuri U; Mehta D
    Int J Pediatr Otorhinolaryngol; 2015 Dec; 79(12):2234-7. PubMed ID: 26518466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transoral robotic tongue base reduction in surgical management of obstructive sleep apnea syndrome.
    Sayin I; Fakhoury R; Bachy V; Remacle M; Lawson G
    B-ENT; 2015; Suppl 24():51-4. PubMed ID: 26891532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laser tongue base mucosectomy is a useful diagnostic tool in the management of unknown primary cancers of the head and neck region.
    Olaleye O; Nassif R; Fleming B; Burrows S
    J Laryngol Otol; 2023 Apr; 137(4):438-441. PubMed ID: 35674061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transoral Robotic Surgery versus Plasma Ablation for Tongue Base Reduction in Obstructive Sleep Apnea: Meta-analysis.
    Lee JA; Byun YJ; Nguyen SA; Lentsch EJ; Gillespie MB
    Otolaryngol Head Neck Surg; 2020 Jun; 162(6):839-852. PubMed ID: 32204654
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transoral robotic retropharyngeal node dissection in oropharyngeal squamous cell carcinoma: Patterns of metastasis and functional outcomes.
    Troob S; Givi B; Hodgson M; Mowery A; Gross ND; Andersen PE; Clayburgh D
    Head Neck; 2017 Oct; 39(10):1969-1975. PubMed ID: 28758272
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System.
    Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R
    Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Management of human papillomavirus-related unknown primaries of the head and neck with a transoral surgical approach.
    Graboyes EM; Sinha P; Thorstad WL; Rich JT; Haughey BH
    Head Neck; 2015 Nov; 37(11):1603-11. PubMed ID: 24931847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform.
    Gabrysz-Forget F; Mur T; Dolan R; Yarlagadda B
    J Robot Surg; 2020 Feb; 14(1):85-89. PubMed ID: 30825098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A prospective evaluation of short-term dysphagia after transoral robotic surgery for squamous cell carcinoma of the oropharynx.
    Albergotti WG; Jordan J; Anthony K; Abberbock S; Wasserman-Wincko T; Kim S; Ferris RL; Duvvuri U
    Cancer; 2017 Aug; 123(16):3132-3140. PubMed ID: 28467606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The acceptance and adoption of transoral robotic surgery in Australia and New Zealand.
    Krishnan G; Mintz J; Foreman A; Hodge JC; Krishnan S
    J Robot Surg; 2019 Apr; 13(2):301-307. PubMed ID: 30128930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery.
    Chan JYK; Tsang RK; Holsinger FC; Tong MCF; Ng CWK; Chiu PWY; Ng SSM; Wong EWY
    Oral Oncol; 2019 Jul; 94():101-105. PubMed ID: 31178203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intraoperative image guidance in transoral robotic surgery: A pilot study.
    Ma AK; Daly M; Qiu J; Chan HHL; Goldstein DP; Irish JC; de Almeida JR
    Head Neck; 2017 Oct; 39(10):1976-1983. PubMed ID: 28755399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transoral robotic biopsy of the tongue base: A novel paradigm in the evaluation of unknown primary tumors of the head and neck.
    Abuzeid WM; Bradford CR; Divi V
    Head Neck; 2013 Apr; 35(4):E126-30. PubMed ID: 22180229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transoral robotic surgery versus conventional surgery in treatment for squamous cell carcinoma of the upper aerodigestive tract.
    Hammoudi K; Pinlong E; Kim S; Bakhos D; Morinière S
    Head Neck; 2015 Sep; 37(9):1304-9. PubMed ID: 24816480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. History and Acceptance of Transoral Robotic Surgery.
    Thaler ER
    Otolaryngol Clin North Am; 2020 Dec; 53(6):943-948. PubMed ID: 32838969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transoral Robotic Surgery for Obstructive Sleep Apnoea-Hypopnoea Syndrome.
    Vauterin T; Garas G; Arora A
    ORL J Otorhinolaryngol Relat Spec; 2018; 80(3-4):134-147. PubMed ID: 29936512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.