BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30420331)

  • 21. Genome-resolved metagenomics of sugarcane vinasse bacteria.
    Cassman NA; Lourenço KS; do Carmo JB; Cantarella H; Kuramae EE
    Biotechnol Biofuels; 2018; 11():48. PubMed ID: 29483941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbiota profile in mesophilic biodigestion of sugarcane vinasse in batch reactors.
    Iltchenco J; Peruzzo V; Eva Magrini F; Marconatto L; Paula Torres A; Luiz Beal L; Paesi S
    Water Sci Technol; 2021 Oct; 84(8):2028-2039. PubMed ID: 34695028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy.
    Naspolini BF; Machado ACO; Cravo Junior WB; Freire DMG; Cammarota MC
    Biomed Res Int; 2017; 2017():8986165. PubMed ID: 29250551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock.
    Kuruti K; Gangagni Rao A; Gandu B; Kiran G; Mohammad S; Sailaja S; Swamy YV
    Bioresour Technol; 2015 Sep; 192():646-53. PubMed ID: 26094189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequential process of solid-state cultivation with fungal consortium and ethanol fermentation by Saccharomyces cerevisiae from sugarcane bagasse.
    Brito Codato C; Gaspar Bastos R; Ceccato-Antonini SR
    Bioprocess Biosyst Eng; 2021 Oct; 44(10):1-8. PubMed ID: 34018026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization.
    Santana H; Cereijo CR; Teles VC; Nascimento RC; Fernandes MS; Brunale P; Campanha RC; Soares IP; Silva FCP; Sabaini PS; Siqueira FG; Brasil BSAF
    Bioresour Technol; 2017 Mar; 228():133-140. PubMed ID: 28061395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.
    Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors.
    Rabelo CABS; Soares LA; Sakamoto IK; Silva EL; Varesche MBA
    J Environ Manage; 2018 Oct; 223():952-963. PubMed ID: 30007891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses.
    de Godoi LAG; Camiloti PR; Bernardes AN; Sanchez BLS; Torres APR; da Conceição Gomes A; Botta LS
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29267-29282. PubMed ID: 31396875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.
    Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2018 May; 34(6):80. PubMed ID: 29802468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial community and physicochemical dynamics during the production of 'Chicha', a traditional beverage of Indigenous people of Brazil.
    Resende LV; Pinheiro LK; Miguel MGDCP; Ramos CL; Vilela DM; Schwan RF
    World J Microbiol Biotechnol; 2018 Mar; 34(3):46. PubMed ID: 29520720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the Organic Loading Rate on Polyhydroxyalkanoate Production from Sugarcane Stillage by Mixed Microbial Cultures.
    de Oliveira GHD; Niz MYK; Zaiat M; Rodrigues JAD
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1039-1055. PubMed ID: 31165392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing.
    Laothanachareon T; Kanchanasuta S; Mhuanthong W; Phalakornkule C; Pisutpaisal N; Champreda V
    J Environ Manage; 2014 Nov; 144():143-51. PubMed ID: 24945701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the effect of different treatment methods on sugarcane vinasse remediation.
    Castro LEN; Santos JVF; Fagnani KC; Alves HJ; Colpini LMS
    J Environ Sci Health B; 2019; 54(9):791-800. PubMed ID: 31554463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Wild Lactobacillus buchneri Strains on the Fermentation Profile and Microbial Populations of Sugarcane Silage.
    da Silva LD; Pereira OG; Roseira JPS; Agarussi MCN; da Silva VP; da Silva TC; Dos S Leandro E; de Paula RA; Santos SA; Ribeiro KG; de C V Filho S
    Recent Pat Food Nutr Agric; 2020; 11(1):63-68. PubMed ID: 30686266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products.
    Lee H; Jung Sohn Y; Jeon S; Yang H; Son J; Jin Kim Y; Jae Park S
    Bioresour Technol; 2023 May; 376():128879. PubMed ID: 36921642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice.
    Zhang J; Yu L; Xu M; Yang ST; Yan Q; Lin M; Tang IC
    Appl Microbiol Biotechnol; 2017 May; 101(10):4327-4337. PubMed ID: 28238080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The consequences of Lactobacillus vini and Dekkera bruxellensis as contaminants of the sugarcane-based ethanol fermentation.
    de Souza RB; dos Santos BM; de Fátima Rodrigues de Souza R; da Silva PK; Lucena BT; de Morais MA
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1645-50. PubMed ID: 22842986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.
    Ratti RP; Delforno TP; Okada DY; Varesche MB
    Microbiol Res; 2015 Apr; 173():10-7. PubMed ID: 25801966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures.
    Ruiz V; Ilhan ZE; Kang DW; Krajmalnik-Brown R; Buitrón G
    J Biotechnol; 2014 Jul; 182-183():11-8. PubMed ID: 24798298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.