BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30420426)

  • 1. Structure and reactivity of a siderophore-interacting protein from the marine bacterium
    Trindade IB; Silva JM; Fonseca BM; Catarino T; Fujita M; Matias PM; Moe E; Louro RO
    J Biol Chem; 2019 Jan; 294(1):157-167. PubMed ID: 30420426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Uptake Oxidoreductase (IruO) Uses a Flavin Adenine Dinucleotide Semiquinone Intermediate for Iron-Siderophore Reduction.
    Kobylarz MJ; Heieis GA; Loutet SA; Murphy MEP
    ACS Chem Biol; 2017 Jul; 12(7):1778-1786. PubMed ID: 28463500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the Siderophore-interacting protein SIP from Aeromonas hydrophila.
    Shang F; Lan J; Wang L; Liu W; Chen Y; Chen J; Ha NC; Quan C; Nam KH; Xu Y
    Biochem Biophys Res Commun; 2019 Oct; 519(1):23-28. PubMed ID: 31477273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis.
    Trindade IB; Fonseca BM; Matias PM; Louro RO; Moe E
    Acta Crystallogr F Struct Biol Commun; 2016 Sep; 72(Pt 9):667-71. PubMed ID: 27599855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca.
    Li K; Chen WH; Bruner SD
    Biochemistry; 2015 Jun; 54(25):3989-4000. PubMed ID: 26043104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role.
    Kees ED; Pendleton AR; Paquete CM; Arriola MB; Kane AL; Kotloski NJ; Intile PJ; Gralnick JA
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175188
    [No Abstract]   [Full Text] [Related]  

  • 9. Complex Iron Uptake by the Putrebactin-Mediated and Feo Systems in Shewanella oneidensis.
    Liu L; Li S; Wang S; Dong Z; Gao H
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097446
    [No Abstract]   [Full Text] [Related]  

  • 10. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.
    Demmer JK; Huang H; Wang S; Demmer U; Thauer RK; Ermler U
    J Biol Chem; 2015 Sep; 290(36):21985-95. PubMed ID: 26139605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.
    Fennessey CM; Jones ME; Taillefert M; DiChristina TJ
    Appl Environ Microbiol; 2010 Apr; 76(8):2425-32. PubMed ID: 20190086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrocyclic polyketides with siderophore mode of action from marine heterotrophic Shewanella algae: Prospective anti-infective leads attenuate drug-resistant pathogens.
    Chakraborty K; Kizhakkekalam VK; Joy M
    J Appl Microbiol; 2021 May; 130(5):1552-1570. PubMed ID: 33006801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promiscuous Enzymes Cause Biosynthesis of Diverse Siderophores in Shewanella oneidensis.
    Wang S; Liang H; Liu L; Jiang X; Wu S; Gao H
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction and mobilization of iron by a NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Coves J; Fontecave M
    Eur J Biochem; 1993 Feb; 211(3):635-41. PubMed ID: 8436123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.
    Binda C; Robinson RM; Martin Del Campo JS; Keul ND; Rodriguez PJ; Robinson HH; Mattevi A; Sobrado P
    J Biol Chem; 2015 May; 290(20):12676-88. PubMed ID: 25802330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile.
    Miethke M; Pierik AJ; Peuckert F; Seubert A; Marahiel MA
    J Biol Chem; 2011 Jan; 286(3):2245-60. PubMed ID: 21051545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Blazyk JL; Lippard SJ
    Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.