BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30420443)

  • 21. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates.
    Maegawa S; Koide K; Ito K; Akiyama Y
    Mol Microbiol; 2007 Apr; 64(2):435-47. PubMed ID: 17493126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and mechanism of rhomboid protease.
    Ha Y; Akiyama Y; Xue Y
    J Biol Chem; 2013 May; 288(22):15430-6. PubMed ID: 23585569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.
    Baker RP; Young K; Feng L; Shi Y; Urban S
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8257-62. PubMed ID: 17463085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease.
    Lazareno-Saez C; Arutyunova E; Coquelle N; Lemieux MJ
    J Mol Biol; 2013 Apr; 425(7):1127-42. PubMed ID: 23353827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cleavage of a multispanning membrane protein by an intramembrane serine protease.
    Erez E; Bibi E
    Biochemistry; 2009 Dec; 48(51):12314-22. PubMed ID: 19919105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.
    Goel P; Jumpertz T; Tichá A; Ogorek I; Mikles DC; Hubalek M; Pietrzik CU; Strisovsky K; Schmidt B; Weggen S
    Bioorg Med Chem Lett; 2018 May; 28(8):1417-1422. PubMed ID: 29463448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural cavities are critical to balancing stability and activity of a membrane-integral enzyme.
    Guo R; Cang Z; Yao J; Kim M; Deans E; Wei G; Kang SG; Hong H
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22146-22156. PubMed ID: 32848056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soluble Regions of GlpG Influence Protein-Lipid Interactions and Lipid Distribution.
    Almeida-Hernandez Y; Tidow H
    J Phys Chem B; 2019 Sep; 123(37):7852-7858. PubMed ID: 31480836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for intramembrane proteolysis by rhomboid serine proteases.
    Ben-Shem A; Fass D; Bibi E
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis.
    Cho S; Dickey SW; Urban S
    Mol Cell; 2016 Feb; 61(3):329-340. PubMed ID: 26805573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifaceted substrate capture scheme of a rhomboid protease.
    Reddy T; Rainey JK
    J Phys Chem B; 2012 Aug; 116(30):8942-54. PubMed ID: 22770371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay.
    Vosyka O; Vinothkumar KR; Wolf EV; Brouwer AJ; Liskamp RM; Verhelst SH
    Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2472-7. PubMed ID: 23359682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of rhomboid protease in a lipid environment.
    Vinothkumar KR
    J Mol Biol; 2011 Mar; 407(2):232-47. PubMed ID: 21256137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release.
    Cho S; Baker RP; Ji M; Urban S
    Nat Struct Mol Biol; 2019 Oct; 26(10):910-918. PubMed ID: 31570873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steric trapping reveals a cooperativity network in the intramembrane protease GlpG.
    Guo R; Gaffney K; Yang Z; Kim M; Sungsuwan S; Huang X; Hubbell WL; Hong H
    Nat Chem Biol; 2016 May; 12(5):353-360. PubMed ID: 26999782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Catalytic Machinery of Rhomboid Proteases: Combined MD and QM Simulations.
    Uritsky N; Shokhen M; Albeck A
    J Chem Theory Comput; 2012 Nov; 8(11):4663-71. PubMed ID: 26605622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micelle-catalyzed domain swapping in the GlpG rhomboid protease cytoplasmic domain.
    Ghasriani H; Kwok JK; Sherratt AR; Foo AC; Qureshi T; Goto NK
    Biochemistry; 2014 Sep; 53(37):5907-15. PubMed ID: 25162988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural principles of intramembrane proteases.
    Ha Y
    Curr Opin Struct Biol; 2007 Aug; 17(4):405-11. PubMed ID: 17714936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The rhomboid protease family: a decade of progress on function and mechanism.
    Urban S; Dickey SW
    Genome Biol; 2011 Oct; 12(10):231. PubMed ID: 22035660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii.
    Clemmer KM; Sturgill GM; Veenstra A; Rather PN
    J Bacteriol; 2006 May; 188(9):3415-9. PubMed ID: 16621838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.