These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30420493)

  • 41. Movement Strategies for Countermovement Jumping are Potentially Influenced by Elastic Energy Stored and Released from Tendons.
    Wade L; Lichtwark G; Farris DJ
    Sci Rep; 2018 Feb; 8(1):2300. PubMed ID: 29396499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trunk position influences joint activation pattern and physical performance during vertical jumping.
    Kopper B; Ureczky D; Tihanyi J
    Acta Physiol Hung; 2012 Jun; 99(2):194-205. PubMed ID: 22849844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mobility of hindlimb joints in Japanese macaques (Macaca fuscata) as influenced by biarticular musculature.
    Okada M; Morimoto M; Kimura T
    Folia Primatol (Basel); 1996; 66(1-4):181-91. PubMed ID: 8953758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints.
    Sugisaki N; Okada J; Kanehisa H
    J Sports Sci; 2013; 31(8):894-906. PubMed ID: 23327555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanical and muscular factors influencing the performance in maximal vertical jumping after different prestretch loads.
    Voigt M; Simonsen EB; Dyhre-Poulsen P; Klausen K
    J Biomech; 1995 Mar; 28(3):293-307. PubMed ID: 7730388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proximal-to-distal sequencing in vertical jumping with and without arm swing.
    Chiu LZ; Bryanton MA; Moolyk AN
    J Strength Cond Res; 2014 May; 28(5):1195-202. PubMed ID: 24476777
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of hindlimb length variation on jumping dynamics in the Longshanks mouse.
    Bradley-Cronkwright M; Moore S; Hou L; Cote S; Rolian C
    J Exp Biol; 2024 May; 227(9):. PubMed ID: 38634230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Mathematical model of the hindlimbs control during cat locomotion with balance].
    Lyakhovetskii VA; Gorskii OV; Gerasimenko YP; Musienko PE
    Ross Fiziol Zh Im I M Sechenova; 2015 Feb; 101(2):200-13. PubMed ID: 26012112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A biomechanical analysis of good and poor performers of the vertical jump.
    Vanezis A; Lees A
    Ergonomics; 2005 Sep 15-Nov 15; 48(11-14):1594-603. PubMed ID: 16338725
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Explanation of the bilateral deficit in human vertical squat jumping.
    Bobbert MF; de Graaf WW; Jonk JN; Casius LJ
    J Appl Physiol (1985); 2006 Feb; 100(2):493-9. PubMed ID: 16239616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
    Nagano A; Komura T; Fukashiro S; Himeno R
    J Electromyogr Kinesiol; 2005 Aug; 15(4):367-76. PubMed ID: 15811607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hindlimb muscle anatomical mechanical advantage differs among joints and stride phases in basilisk lizards.
    Bergmann PJ; Hare-Drubka M
    Zoology (Jena); 2015 Aug; 118(4):291-8. PubMed ID: 26013100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.
    Daley MA; Felix G; Biewener AA
    J Exp Biol; 2007 Feb; 210(Pt 3):383-94. PubMed ID: 17234607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps.
    Nagano A; Ishige Y; Fukashiro S
    J Biomech; 1998 Oct; 31(10):951-5. PubMed ID: 9840762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Explosive movement in the older men: analysis and comparative study of vertical jump.
    Argaud S; Pairot de Fontenay B; Blache Y; Monteil K
    Aging Clin Exp Res; 2017 Oct; 29(5):985-992. PubMed ID: 27844453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics of force and muscle stimulation in human vertical jumping.
    Bobbert MF; van Zandwijk JP
    Med Sci Sports Exerc; 1999 Feb; 31(2):303-10. PubMed ID: 10063821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna).
    Aiello BR; Blob RW; Butcher MT
    J Morphol; 2013 Sep; 274(9):1060-9. PubMed ID: 23733583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Foot placement modifies kinematics and kinetics during drop jumping.
    Kovács I; Tihanyi J; Devita P; Rácz L; Barrier J; Hortobágyi T
    Med Sci Sports Exerc; 1999 May; 31(5):708-16. PubMed ID: 10331892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A work-energy approach to determine individual joint contributions to vertical jump performance.
    Hubley CL; Wells RP
    Eur J Appl Physiol Occup Physiol; 1983; 50(2):247-54. PubMed ID: 6681756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).
    Williams SB; Usherwood JR; Jespers K; Channon AJ; Wilson AM
    J Exp Biol; 2009 Feb; 212(Pt 4):550-65. PubMed ID: 19181903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.