These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30420543)

  • 41. Optical solitons in media with focusing and defocusing saturable nonlinearity and a parity-time-symmetric external potential.
    Li P; Mihalache D; Malomed BA
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2124):. PubMed ID: 29891499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. đť’«đť’Ż-symmetric and antisymmetric nonlinear states in a split potential box.
    Chen Z; Li Y; Malomed BA
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2124):. PubMed ID: 29891496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Turing patterns and long-time behavior in a three-species food-chain model.
    Parshad RD; Kumari N; Kasimov AR; Abderrahmane HA
    Math Biosci; 2014 Aug; 254():83-102. PubMed ID: 24952324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early models of chemical oscillations failed to provide bounded solutions.
    Erneux T
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2124):. PubMed ID: 29891500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns.
    Konishi K; Hara N
    Phys Rev E; 2018 May; 97(5-1):052201. PubMed ID: 29906826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking.
    Kao HC; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026211. PubMed ID: 22463303
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An hypothesis: phosphorylation fields as the source of positional information and cell differentiation--(cAMP, ATP) as the universal morphogenetic Turing couple.
    Schiffmann Y
    Prog Biophys Mol Biol; 1991; 56(2):79-105. PubMed ID: 1658848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Turing patterns beyond hexagons and stripes.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay.
    Xing Y; Jiang W; Cao X
    Math Biosci Eng; 2023 Sep; 20(10):18413-18444. PubMed ID: 38052564
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linear and Weakly Nonlinear Stability Analyses of Turing Patterns for Diffusive Predator-Prey Systems in Freshwater Marsh Landscapes.
    Zhang L; Zhang F; Ruan S
    Bull Math Biol; 2017 Mar; 79(3):560-593. PubMed ID: 28138877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability.
    Delcey L; Haraguss M
    Philos Trans A Math Phys Eng Sci; 2018 Apr; 376(2117):. PubMed ID: 29507173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Instability of turing patterns in reaction-diffusion-ODE systems.
    Marciniak-Czochra A; Karch G; Suzuki K
    J Math Biol; 2017 Feb; 74(3):583-618. PubMed ID: 27305913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feedback control of subcritical Turing instability with zero mode.
    Golovin AA; Kanevsky Y; Nepomnyashchy AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046218. PubMed ID: 19518323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Symmetric, asymmetric, and antiphase Turing patterns in a model system with two identical coupled layers.
    Yang L; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 2):026211. PubMed ID: 14995552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diffusion-driven destabilization of spatially homogeneous limit cycles in reaction-diffusion systems.
    Kuwamura M; Izuhara H
    Chaos; 2017 Mar; 27(3):033112. PubMed ID: 28364773
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns.
    Bánsági T; Vanag VK; Epstein IR
    Science; 2011 Mar; 331(6022):1309-12. PubMed ID: 21310963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Turing pattern dynamics in an activator-inhibitor system with superdiffusion.
    Zhang L; Tian C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062915. PubMed ID: 25615172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Gray-Scott model under the influence of noise: reentrant spatiotemporal intermittency in a reaction-diffusion system.
    Hayase Y; Brand HR
    J Chem Phys; 2005 Sep; 123(12):124507. PubMed ID: 16392498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermodynamic and morphological characterization of Turing patterns in non-isothermal reaction-diffusion systems.
    Serna H; Muñuzuri AP; Barragán D
    Phys Chem Chem Phys; 2017 Jun; 19(22):14401-14411. PubMed ID: 28435963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lattice Boltzmann study of pattern formation in reaction-diffusion systems.
    Ayodele SG; Varnik F; Raabe D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016702. PubMed ID: 21405790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.