BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30420656)

  • 1. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China.
    Lu Y; Hu H; Li C; Tian F
    Sci Rep; 2018 Nov; 8(1):16700. PubMed ID: 30420656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields.
    Feng S; Hao Z; Zhang X; Hao F
    Sci Total Environ; 2019 Nov; 689():1228-1234. PubMed ID: 31466161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased probability and severity of compound dry and hot growing seasons over world's major croplands.
    He Y; Hu X; Xu W; Fang J; Shi P
    Sci Total Environ; 2022 Jun; 824():153885. PubMed ID: 35182627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projected climate impacts to South African maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches.
    Estes LD; Beukes H; Bradley BA; Debats SR; Oppenheimer M; Ruane AC; Schulze R; Tadross M
    Glob Chang Biol; 2013 Dec; 19(12):3762-74. PubMed ID: 23864352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate trends and global crop production since 1980.
    Lobell DB; Schlenker W; Costa-Roberts J
    Science; 2011 Jul; 333(6042):616-20. PubMed ID: 21551030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate-associated major food crops production change under multi-scenario in China.
    Liu Y; Zhang J; Pan T; Chen Q; Qin Y; Ge Q
    Sci Total Environ; 2022 Mar; 811():151393. PubMed ID: 34748850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming.
    Sun Q; Miao C; Hanel M; Borthwick AGL; Duan Q; Ji D; Li H
    Environ Int; 2019 Jul; 128():125-136. PubMed ID: 31048130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying gaps in actual and simulated/potential yield and growing season precipitation in Morocco.
    Epule TE; Chehbouni A; Dhiba D; Etongo D; Achli S; Salih W; Er-Raki S
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84844-84860. PubMed ID: 35788488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal characteristics of agro-climatic indices and extreme weather events during the growing season for summer maize (Zea mays L.) in Huanghuaihai region, China.
    Zhang Z; Yang X; Liu Z; Bai F; Sun S; Nie J; Gao J; Ming B; Xie R; Li S
    Int J Biometeorol; 2020 May; 64(5):827-839. PubMed ID: 32040625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale.
    Feng S; Hao Z
    Sci Total Environ; 2020 Feb; 704():135250. PubMed ID: 31818572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the dynamic vegetation on climate extremes during the wheat growing period over China.
    Dong S; Shi Y
    Sci Total Environ; 2022 May; 819():153079. PubMed ID: 35033571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain.
    Ding W; Cai Y; Cai Z; Yagi K; Zheng X
    Sci Total Environ; 2007 Feb; 373(2-3):501-11. PubMed ID: 17229455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China.
    Li E; Zhao J; Pullens JWM; Yang X
    Sci Total Environ; 2022 Mar; 812():152461. PubMed ID: 34942238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial-temporal patterns of high-temperature and drought during the maize growing season under current and future climate changes in northeast China.
    Li E; Zhao J; Zhang W; Yang X
    J Sci Food Agric; 2023 Sep; 103(12):5709-5716. PubMed ID: 37088942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.