These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 30420779)
1. Design and effectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sarasola-Sanz A; Irastorza-Landa N; López-Larraz E; Shiman F; Spüler M; Birbaumer N; Ramos-Murguialday A Sci Rep; 2018 Nov; 8(1):16688. PubMed ID: 30420779 [TBL] [Abstract][Full Text] [Related]
2. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
3. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
4. Robotic-assisted rehabilitation of the upper limb after acute stroke. Masiero S; Celia A; Rosati G; Armani M Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510 [TBL] [Abstract][Full Text] [Related]
5. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
6. Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training. Sarasola-Sanz A; López-Larraz E; Irastorza-Landa N; Rossi G; Figueiredo T; McIntyre J; Ramos-Murguialday A Front Neurosci; 2022; 16():764936. PubMed ID: 35360179 [TBL] [Abstract][Full Text] [Related]
7. Case studies in poststroke hemiplegic patients using SEMUL: a passive 2-DOF rehabilitation robot. Koyanagi K; Kuwahara Y; Kamida T; Ozawa T; Mizukami R; Genda K; Mori A; Motoyoshi T; Masuta H; Oshima T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4678-4681. PubMed ID: 28269316 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620 [TBL] [Abstract][Full Text] [Related]
9. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
10. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training. Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614 [TBL] [Abstract][Full Text] [Related]
11. Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke. Peters HT; Page SJ; Persch A Arch Phys Med Rehabil; 2017 Sep; 98(9):1821-1827. PubMed ID: 28130084 [TBL] [Abstract][Full Text] [Related]
12. The effect of isolating the paretic limb on weight-bearing distribution and EMG activity during squats in hemiplegic and healthy individuals. Lee DK; An DH; Yoo WG; Hwang BY; Kim TH; Oh JS Top Stroke Rehabil; 2017 May; 24(4):223-227. PubMed ID: 27998242 [TBL] [Abstract][Full Text] [Related]
13. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C; Rusák Z; Horváth I; Ji L Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845 [TBL] [Abstract][Full Text] [Related]
14. Rehabilitation for hemiplegia using an upper limb training system based on a force direction. Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875 [TBL] [Abstract][Full Text] [Related]
15. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Masiero S; Celia A; Armani M; Rosati G Aging Clin Exp Res; 2006 Dec; 18(6):531-5. PubMed ID: 17255643 [TBL] [Abstract][Full Text] [Related]
16. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study. Pennati GV; Da Re C; Messineo I; Bonaiuti D Eur J Phys Rehabil Med; 2015 Aug; 51(4):381-7. PubMed ID: 25358636 [TBL] [Abstract][Full Text] [Related]
17. Electromyographical characteristics and muscle utilization in hemiplegic patients during sit-to-stand activity: an observational study. Lu RR; Li F; Zhu B Eur J Phys Rehabil Med; 2016 Apr; 52(2):186-94. PubMed ID: 26334363 [TBL] [Abstract][Full Text] [Related]
18. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement. Caimmi M; Visani E; Digiacomo F; Scano A; Chiavenna A; Gramigna C; Molinari Tosatti L; Franceschetti S; Molteni F; Panzica F Biomed Res Int; 2016; 2016():7051340. PubMed ID: 27057546 [TBL] [Abstract][Full Text] [Related]
19. Residual Upper Arm Motor Function Primes Innervation of Paretic Forearm Muscles in Chronic Stroke after Brain-Machine Interface (BMI) Training. Curado MR; Cossio EG; Broetz D; Agostini M; Cho W; Brasil FL; Yilmaz O; Liberati G; Lepski G; Birbaumer N; Ramos-Murguialday A PLoS One; 2015; 10(10):e0140161. PubMed ID: 26495971 [TBL] [Abstract][Full Text] [Related]
20. Measurement of synergy and spasticity during functional movement of the post-stoke hemiplegic upper limb. Ohn SH; Yoo WK; Kim DY; Ahn S; Jung B; Choi I; Lee NJ; Jung KI J Electromyogr Kinesiol; 2013 Apr; 23(2):501-7. PubMed ID: 23146551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]