BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30420843)

  • 1. Novel Ethanol- and 5-Hydroxymethyl Furfural-Stimulated β-Glucosidase Retrieved From a Brazilian Secondary Atlantic Forest Soil Metagenome.
    Alves LF; Meleiro LP; Silva RN; Westmann CA; Guazzaroni ME
    Front Microbiol; 2018; 9():2556. PubMed ID: 30420843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation.
    Jeilu O; Alexandersson E; Johansson E; Simachew A; Gessesse A
    Sci Rep; 2024 May; 14(1):10012. PubMed ID: 38693138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression and characterization of a glucose-tolerant β-glucosidase from T. aotearoense with high specific activity for cellobiose.
    Yang F; Yang X; Li Z; Du C; Wang J; Li S
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):8903-15. PubMed ID: 25957152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two New Native β-Glucosidases from Clavispora NRRL Y-50464 Confer Its Dual Function as Cellobiose Fermenting Ethanologenic Yeast.
    Wang X; Liu ZL; Weber SA; Zhang X
    PLoS One; 2016; 11(3):e0151293. PubMed ID: 27011316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel β-glucosidase from a hot-spring metagenome shows elevated thermal stability and tolerance to glucose and ethanol.
    Kaushal G; Rai AK; Singh SP
    Enzyme Microb Technol; 2021 Apr; 145():109764. PubMed ID: 33750538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and biochemical properties of a glucose-stimulated beta-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse.
    Nascimento CV; Souza FH; Masui DC; Leone FA; Peralta RM; Jorge JA; Furriel RP
    J Microbiol; 2010 Feb; 48(1):53-62. PubMed ID: 20221730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13
    Liu Y; Li R; Wang J; Zhang X; Jia R; Gao Y; Peng H
    BMC Biochem; 2017 Mar; 18(1):4. PubMed ID: 28302049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration.
    Cao LC; Wang ZJ; Ren GH; Kong W; Li L; Xie W; Liu YH
    Biotechnol Biofuels; 2015; 8():202. PubMed ID: 26628916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation.
    Loaces I; Amarelle V; Muñoz-Gutierrez I; Fabiano E; Martinez A; Noya F
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9049-60. PubMed ID: 26175105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation.
    El-Ghonemy DH
    J Genet Eng Biotechnol; 2021 Mar; 19(1):45. PubMed ID: 33761018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulosic Ethanol Production Using a Dual Functional Novel Yeast.
    Liu ZL; Dien BS
    Int J Microbiol; 2022; 2022():7853935. PubMed ID: 35295685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An engineered GH1 β-glucosidase displays enhanced glucose tolerance and increased sugar release from lignocellulosic materials.
    Santos CA; Morais MAB; Terrett OM; Lyczakowski JJ; Zanphorlin LM; Ferreira-Filho JA; Tonoli CCC; Murakami MT; Dupree P; Souza AP
    Sci Rep; 2019 Mar; 9(1):4903. PubMed ID: 30894609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation.
    Tang H; Hou J; Shen Y; Xu L; Yang H; Fang X; Bao X
    J Microbiol Biotechnol; 2013 Nov; 23(11):1577-85. PubMed ID: 23928840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis.
    Zhang Z; Wang M; Gao R; Yu X; Chen G
    3 Biotech; 2017 May; 7(1):54. PubMed ID: 28444598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A thermostable and inhibitor resistant β-glucosidase from Rasamsonia emersonii for efficient hydrolysis of lignocellulosics biomass.
    Raheja Y; Singh V; Sharma G; Tsang A; Chadha BS
    Bioprocess Biosyst Eng; 2024 Apr; 47(4):567-582. PubMed ID: 38470501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose.
    Pei J; Pang Q; Zhao L; Fan S; Shi H
    Biotechnol Biofuels; 2012 Jul; 5(1):31. PubMed ID: 22571470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of individual, fused, and co-expressed proteins of endoglucanase and β-glucosidase for hydrolyzing sugarcane bagasse.
    Kurniasih SD; Alfi A; Natalia D; Radjasa OK; Nurachman Z
    Microbiol Res; 2014; 169(9-10):725-32. PubMed ID: 24598011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel High Glucose-Tolerant β-Glucosidase: Targeted Computational Approach for Metagenomic Screening.
    Ariaeenejad S; Nooshi-Nedamani S; Rahban M; Kavousi K; Pirbalooti AG; Mirghaderi S; Mohammadi M; Mirzaei M; Salekdeh GH
    Front Bioeng Biotechnol; 2020; 8():813. PubMed ID: 32850705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.