BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30421037)

  • 21. Human variability of fMRI brain activation in response to oculomotor stimuli.
    Della-Justina HM; Pastorello BF; Santos-Pontelli TE; Pontes-Neto OM; Santos AC; Baffa O; Colafemina JF; Leite JP; de Araujo DB
    Brain Topogr; 2008; 20(3):113-21. PubMed ID: 18080737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-related changes of blood-oxygen-level-dependent signal dynamics during optokinetic stimulation.
    Stefanova I; Stephan T; Becker-Bense S; Dera T; Brandt T; Dieterich M
    Neurobiol Aging; 2013 Oct; 34(10):2277-86. PubMed ID: 23628145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An active-efficient-coding model of optokinetic nystagmus.
    Zhang C; Triesch J; Shi BE
    J Vis; 2016 Nov; 16(14):10. PubMed ID: 27832268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex.
    Helfrich RF; Becker HG; Haarmeier T
    Brain Topogr; 2013 Apr; 26(2):247-63. PubMed ID: 22526896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions between first- and second-order motion revealed by optokinetic nystagmus.
    Harris LR; Smith AT
    Exp Brain Res; 2000 Jan; 130(1):67-72. PubMed ID: 10638442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Horizontal and vertical look and stare optokinetic nystagmus symmetry in healthy adult volunteers.
    Knapp CM; Gottlob I; McLean RJ; Proudlock FA
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):581-8. PubMed ID: 18235002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional magnetic resonance imaging activations of cortical eye fields during saccades, smooth pursuit, and optokinetic nystagmus.
    Dieterich M; Müller-Schunk S; Stephan T; Bense S; Seelos K; Yousry TA
    Ann N Y Acad Sci; 2009 May; 1164():282-92. PubMed ID: 19645913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal and anomalous development of visual motion processing: motion coherence and 'dorsal-stream vulnerability'.
    Braddick O; Atkinson J; Wattam-Bell J
    Neuropsychologia; 2003; 41(13):1769-84. PubMed ID: 14527540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental changes in optokinetic mechanisms in the absence of unilateral cortical control.
    Morrone MC; Atkinson J; Cioni G; Braddick OJ; Fiorentini A
    Neuroreport; 1999 Sep; 10(13):2723-9. PubMed ID: 10511430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optokinetic nystagmus as an assessment of visual attention to divided stimuli.
    Williams IM; Mulhall L; Mattingley J; Lueck C; Abel L
    J Clin Neurosci; 2006 Oct; 13(8):828-33. PubMed ID: 16935509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining spatial independent component analysis with regression to identify the subcortical components of resting-state FMRI functional networks.
    Malherbe C; Messé A; Bardinet E; Pélégrini-Issac M; Perlbarg V; Marrelec G; Worbe Y; Yelnik J; Lehéricy S; Benali H
    Brain Connect; 2014 Apr; 4(3):181-92. PubMed ID: 24575752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The significance of attention and duration of the stimulation in optokinetic nystagmus.
    Holm-Jensen S
    Acta Otolaryngol; 1984; 98(1-2):21-9. PubMed ID: 6464723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness.
    Miyazaki J; Yamamoto H; Ichimura Y; Yamashiro H; Murase T; Yamamoto T; Umeda M; Higuchi T
    Exp Brain Res; 2015 Aug; 233(8):2421-31. PubMed ID: 26014459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the stimulus size in the generation of optokinetic nystagmus in normals and in patients with retinitis pigmentosa.
    Valmaggia C; Gottlob I
    Klin Monbl Augenheilkd; 2004 May; 221(5):390-4. PubMed ID: 15162288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.
    Chen N; Bi T; Zhou T; Li S; Liu Z; Fang F
    Neuroimage; 2015 Jul; 115():17-29. PubMed ID: 25921327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The alternation of optokinetic responses driven by moving stimuli in humans.
    Wei M; Sun F
    Brain Res; 1998 Dec; 813(2):406-10. PubMed ID: 9838205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H; Ohlendorf S; Speck O; Sprenger A; Rutschmann RM; Haller S; Greenlee MW
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness.
    Ji JT; So RH; Cheung RT
    Hum Factors; 2009 Oct; 51(5):739-51. PubMed ID: 20196298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deficits of visual motion perception and optokinetic nystagmus after posterior suprasylvian lesions in the ferret (Mustela putorius furo).
    Hupfeld D; Distler C; Hoffmann KP
    Exp Brain Res; 2007 Oct; 182(4):509-23. PubMed ID: 17593360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study).
    Dieterich M; Bauermann T; Best C; Stoeter P; Schlindwein P
    Brain; 2007 Aug; 130(Pt 8):2108-16. PubMed ID: 17575279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.