BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 30421068)

  • 1. Radiation dose assessments for generic nuclear power plants part I: Routine operation.
    Abdel-Aal MM; Tawfik FS; Kandil NM
    Appl Radiat Isot; 2024 Jun; 211():111412. PubMed ID: 38955076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-range atmospheric dispersion of an anomalous selenium-75 emission.
    Frankemölle JPKW; Camps J; De Meutter P; Antoine P; Delcloo AW; Vermeersch F; Meyers J
    J Environ Radioact; 2022 Dec; 255():107012. PubMed ID: 36126488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mixed layer modified radionuclide atmospheric diffusion based on Gaussian model.
    Li T; Zheng X; Yu S; Wang J; Cheng J; Liu J
    Front Public Health; 2022; 10():1097643. PubMed ID: 36684942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil surface roughness impacts the risk arising from a hypothetical urban radiological dispersive device activation.
    Bonfim CES; Silva VWL; Rodrigues LD; Curzio RC; Santos A; Profeta WHS; Xavier LRP; de Mello LA; Stenders RM; Andrade ER
    Radiat Prot Dosimetry; 2024 Feb; 200(2):206-213. PubMed ID: 37968997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of numerical models to predict the atmospheric dispersion of radionuclides.
    Leelőssy Á; Lagzi I; Kovács A; Mészáros R
    J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radionuclides in the Great Lakes basin.
    Ahier BA; Tracy BL
    Environ Health Perspect; 1995 Dec; 103 Suppl 9(Suppl 9):89-101. PubMed ID: 8635444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of radionuclide atmospheric dispersion and dose assessment for inhabitants of Tehran province after a hypothetical accident of the Tehran Research Reactor.
    Vali R; Adelikhah ME; Feghhi SAH; Noorikalkhoran O; Ahangari R
    Radiat Environ Biophys; 2019 Mar; 58(1):119-128. PubMed ID: 30421068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the protective actions for a hypothetical accident of the Bushehr nuclear power plant at different meteorological conditions.
    Ahangari R; Noori-Kalkhoran O
    Radiat Environ Biophys; 2019 May; 58(2):277-285. PubMed ID: 30617522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant.
    Sohrabi M; Ghasemi M; Amrollahi R; Khamooshi C; Parsouzi Z
    Radiat Environ Biophys; 2013 May; 52(2):235-44. PubMed ID: 23358597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of radiological consequence of a hypothetical accident at the Ghana Research Reactor-1 facility based on terrorist attack.
    Obeng HK; Birikorang SA; Gyamfi K; Adu S; Nyamful A
    Sci Prog; 2021 Oct; 104(4):368504211054986. PubMed ID: 34821181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atmospheric transport of radioactive debris to Norway in case of a hypothetical accident related to the recovery of the Russian submarine K-27.
    Bartnicki J; Amundsen I; Brown J; Hosseini A; Hov Ø; Haakenstad H; Klein H; Lind OC; Salbu B; Szacinski Wendel CC; Ytre-Eide MA
    J Environ Radioact; 2016 Jan; 151 Pt 2():404-16. PubMed ID: 25804322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3.
    Paquet F; Bailey MR; Leggett RW; Lipsztein J; Marsh J; Fell TP; Smith T; Nosske D; Eckerman KF; Berkovski V; Blanchardon E; Gregoratto D; Harrison JD;
    Ann ICRP; 2017 Dec; 46(3-4):1-486. PubMed ID: 29380630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Public member dose assessment of Bushehr Nuclear Power Plant under normal operation by modeling the fallout from stack using the HYSPLIT atmospheric dispersion model.
    Zali A; Shamsaei Zafarghandi M; Feghhi SA; Taherian AM
    J Environ Radioact; 2017 May; 171():1-8. PubMed ID: 28160701
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.