These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 30421358)

  • 1. Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages.
    Zhen X; Zhou H; Ding W; Zhou B; Xu X; Perčulija V; Chen CJ; Chang MX; Choudhary MI; Ouyang S
    Protein Cell; 2019 Feb; 10(2):131-136. PubMed ID: 30421358
    [No Abstract]   [Full Text] [Related]  

  • 2. AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of
    Pei K; Zhang J; Zou T; Liu Z
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems.
    Gallego Del Sol F; Penadés JR; Marina A
    Mol Cell; 2019 Apr; 74(1):59-72.e3. PubMed ID: 30745087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision.
    Wang Q; Guan Z; Pei K; Wang J; Liu Z; Yin P; Peng D; Zou T
    Nat Microbiol; 2018 Nov; 3(11):1266-1273. PubMed ID: 30224798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the mechanism of action of the arbitrium communication system in SPbeta phages.
    Gallego Del Sol F; Quiles-Puchalt N; Brady A; Penadés JR; Marina A
    Nat Commun; 2022 Jun; 13(1):3627. PubMed ID: 35750663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The arbitrium system controls prophage induction.
    Brady A; Quiles-Puchalt N; Gallego Del Sol F; Zamora-Caballero S; Felipe-Ruíz A; Val-Calvo J; Meijer WJJ; Marina A; Penadés JR
    Curr Biol; 2021 Nov; 31(22):5037-5045.e3. PubMed ID: 34562384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of phage protein BC1872 from Bacillus cereus, a singleton with new fold.
    Zhang R; Joachimiak G; Jiang S; Cipriani A; Collart F; Joachimiak A
    Proteins; 2006 Jul; 64(1):280-3. PubMed ID: 16596646
    [No Abstract]   [Full Text] [Related]  

  • 8. Crystal structures of the Bacillus subtilis prophage lytic cassette proteins XepA and YomS.
    Freitag-Pohl S; Jasilionis A; Håkansson M; Svensson LA; Kovačič R; Welin M; Watzlawick H; Wang L; Altenbuchner J; Płotka M; Kaczorowska AK; Kaczorowski T; Nordberg Karlsson E; Al-Karadaghi S; Walse B; Aevarsson A; Pohl E
    Acta Crystallogr D Struct Biol; 2019 Nov; 75(Pt 11):1028-1039. PubMed ID: 31692476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Bacillus subtilis SPP1 phage gp23.1, a putative chaperone.
    Veesler D; Blangy S; Lichière J; Ortiz-Lombardía M; Tavares P; Campanacci V; Cambillau C
    Protein Sci; 2010 Sep; 19(9):1812-6. PubMed ID: 20665904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage.
    Guan Z; Pei K; Wang J; Cui Y; Zhu X; Su X; Zhou Y; Zhang D; Tang C; Yin P; Liu Z; Zou T
    Cell Discov; 2019; 5():29. PubMed ID: 31149347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dsDNA packaging motor in bacteriophage ø29.
    Morais MC
    Adv Exp Med Biol; 2012; 726():511-47. PubMed ID: 22297529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalization of phage phi29 DNA replication: interaction between the primer terminal protein and the membrane-associated protein p1.
    Bravo A; Illana B; Salas M
    EMBO J; 2000 Oct; 19(20):5575-84. PubMed ID: 11032825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration.
    Xu J; Gui M; Wang D; Xiang Y
    Nature; 2016 Jun; 534(7608):544-7. PubMed ID: 27309813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophage phi29 scaffolding protein gp7 before and after prohead assembly.
    Morais MC; Kanamaru S; Badasso MO; Koti JS; Owen BA; McMurray CT; Anderson DL; Rossmann MG
    Nat Struct Biol; 2003 Jul; 10(7):572-6. PubMed ID: 12778115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical ultracentrifugation studies of phage phi29 protein p6 binding to DNA.
    Alcorlo M; Jiménez M; Ortega A; Hermoso JM; Salas M; Minton AP; Rivas G
    J Mol Biol; 2009 Feb; 385(5):1616-29. PubMed ID: 19084023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56.
    Pérez-Lago L; Serrano-Heras G; Baños B; Lázaro JM; Alcorlo M; Villar L; Salas M
    Mol Microbiol; 2011 Jun; 80(6):1657-66. PubMed ID: 21542855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3.
    Wang X; Yao D; Xu JG; Li AR; Xu J; Fu P; Zhou Y; Zhu Y
    Nat Struct Mol Biol; 2016 Sep; 23(9):868-70. PubMed ID: 27455460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights in the ϕ29 terminal protein DNA-binding and host nucleoid localization functions.
    Holguera I; Redrejo-Rodríguez M; Salas M; Muñoz-Espín D
    Mol Microbiol; 2014 Jan; 91(2):232-41. PubMed ID: 24205926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage Φ29 is required for viral DNA replication in growth-temperature dependent fashion.
    Tone T; Takeuchi A; Makino O
    Biosci Biotechnol Biochem; 2012; 76(12):2351-3. PubMed ID: 23221709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly.
    Dröge A; Santos MA; Stiege AC; Alonso JC; Lurz R; Trautner TA; Tavares P
    J Mol Biol; 2000 Feb; 296(1):117-32. PubMed ID: 10656821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.