These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 30421602)
1. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography. Hulkkonen H; Sah A; Niemi T ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface. Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925 [TBL] [Abstract][Full Text] [Related]
3. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Li Z; Palacios E; Butun S; Kocer H; Aydin K Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563 [TBL] [Abstract][Full Text] [Related]
4. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790 [TBL] [Abstract][Full Text] [Related]
6. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335 [TBL] [Abstract][Full Text] [Related]
7. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles. Cao T; Liu K; Lu L; Chui HC; Simpson RE ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371 [TBL] [Abstract][Full Text] [Related]
9. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting. Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171 [TBL] [Abstract][Full Text] [Related]
10. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207 [TBL] [Abstract][Full Text] [Related]
11. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles. Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003 [TBL] [Abstract][Full Text] [Related]
12. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics. Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410 [TBL] [Abstract][Full Text] [Related]
13. MoS Sun Z; Huang F; Fu Y Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370 [TBL] [Abstract][Full Text] [Related]
14. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces. Pala RA; Butun S; Aydin K; Atwater HA Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965 [TBL] [Abstract][Full Text] [Related]
15. Metasurface-assisted broadband optical absorption in ultrathin perovskite films. He J; Zhou Y; Li CY; Xiong B; Jing H; Peng R; Wang M Opt Express; 2021 Jun; 29(12):19170-19182. PubMed ID: 34154158 [TBL] [Abstract][Full Text] [Related]