These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 30421602)

  • 1. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography.
    Hulkkonen H; Sah A; Niemi T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42941-42947. PubMed ID: 30421602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface.
    Hou G; Wang Z; Lu Z; Song H; Xu J; Chen K
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56178-56185. PubMed ID: 33269925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings.
    Li Z; Palacios E; Butun S; Kocer H; Aydin K
    Sci Rep; 2015 Oct; 5():15137. PubMed ID: 26450563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayer Plasmonic Nanoframes as Large-Area, Broadband Metasurface Absorbers.
    Li Y; Tanriover I; Zhou W; Hadibrata W; Dereshgi SA; Samanta D; Aydin K; Mirkin CA
    Small; 2022 Aug; 18(33):e2201171. PubMed ID: 35859524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles.
    Cao T; Liu K; Lu L; Chui HC; Simpson RE
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin film block copolymer self-assembly for nanophotonics.
    Kulkarni AA; Doerk GS
    Nanotechnology; 2022 Apr; 33(29):. PubMed ID: 35358955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Study of an Efficient Solar Absorber Consisting of Metal Nanoparticles.
    Liu C; Zhang D; Liu Y; Wu D; Chen L; Ma R; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2017 Nov; 12(1):601. PubMed ID: 29168003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithography-Free Broadband Ultrathin-Film Absorbers with Gap-Plasmon Resonance for Organic Photovoltaics.
    Choi M; Kang G; Shin D; Barange N; Lee CW; Ko DH; Kim K
    ACS Appl Mater Interfaces; 2016 May; 8(20):12997-3008. PubMed ID: 27160410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metasurface-assisted broadband optical absorption in ultrathin perovskite films.
    He J; Zhou Y; Li CY; Xiong B; Jing H; Peng R; Wang M
    Opt Express; 2021 Jun; 29(12):19170-19182. PubMed ID: 34154158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces.
    Cummins C; Flamant Q; Dwivedi R; Alvarez-Fernandez A; Demazy N; Bentaleb A; Pound-Lana G; Zelsmann M; Barois P; Hadziioannou G; Baron A; Fleury G; Ponsinet V
    J Colloid Interface Sci; 2022 Mar; 609():375-383. PubMed ID: 34902674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-angle and broadband solar absorber made using highly efficient large-area fabrication strategy.
    Hou W; Yang F; Chen Z; Dong J; Jiang S
    Opt Express; 2022 Jan; 30(3):4424-4433. PubMed ID: 35209680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers.
    Aydin K; Ferry VE; Briggs RM; Atwater HA
    Nat Commun; 2011 Nov; 2():517. PubMed ID: 22044996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates.
    Yoo D; Johnson TW; Cherukulappurath S; Norris DJ; Oh SH
    ACS Nano; 2015 Nov; 9(11):10647-54. PubMed ID: 26402066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.