These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 30421603)
1. Chitosan-Lysozyme Conjugates for Enzyme-Triggered Hydrogel Degradation in Tissue Engineering Applications. Kim S; Cui ZK; Koo B; Zheng J; Aghaloo T; Lee M ACS Appl Mater Interfaces; 2018 Dec; 10(48):41138-41145. PubMed ID: 30421603 [TBL] [Abstract][Full Text] [Related]
2. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
3. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
4. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. Arakawa C; Ng R; Tan S; Kim S; Wu B; Lee M J Tissue Eng Regen Med; 2017 Jan; 11(1):164-174. PubMed ID: 24771649 [TBL] [Abstract][Full Text] [Related]
5. In situ miRNA delivery from a hydrogel promotes osteogenesis of encapsulated mesenchymal stromal cells. Carthew J; Donderwinkel I; Shrestha S; Truong VX; Forsythe JS; Frith JE Acta Biomater; 2020 Jan; 101():249-261. PubMed ID: 31722255 [TBL] [Abstract][Full Text] [Related]
6. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings. Martins AM; Pham QP; Malafaya PB; Raphael RM; Kasper FK; Reis RL; Mikos AG Tissue Eng Part A; 2009 Aug; 15(8):1953-63. PubMed ID: 19327018 [TBL] [Abstract][Full Text] [Related]
7. In vivo osteogenic differentiation of human turbinate mesenchymal stem cells in an injectable in situ-forming hydrogel. Kwon JS; Kim SW; Kwon DY; Park SH; Son AR; Kim JH; Kim MS Biomaterials; 2014 Jul; 35(20):5337-5346. PubMed ID: 24720878 [TBL] [Abstract][Full Text] [Related]
8. Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation. Sharifi F; Hasani M; Atyabi SM; Yu B; Ghalandari B; Li D; Ghorbani F; Irani S; Gholami M Mol Biol Rep; 2022 Dec; 49(12):12063-12075. PubMed ID: 36315326 [TBL] [Abstract][Full Text] [Related]
9. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. Choi B; Kim S; Lin B; Wu BM; Lee M ACS Appl Mater Interfaces; 2014 Nov; 6(22):20110-21. PubMed ID: 25361212 [TBL] [Abstract][Full Text] [Related]
10. In situ bone regeneration enabled by a biodegradable hybrid double-network hydrogel. Zhang Y; Chen M; Tian J; Gu P; Cao H; Fan X; Zhang W Biomater Sci; 2019 Aug; 7(8):3266-3276. PubMed ID: 31180391 [TBL] [Abstract][Full Text] [Related]
11. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Liu T; Li J; Shao Z; Ma K; Zhang Z; Wang B; Zhang Y Med Eng Phys; 2018 Jun; 56():9-15. PubMed ID: 29576458 [TBL] [Abstract][Full Text] [Related]
12. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Cui ZK; Kim S; Baljon JJ; Wu BM; Aghaloo T; Lee M Nat Commun; 2019 Aug; 10(1):3523. PubMed ID: 31388014 [TBL] [Abstract][Full Text] [Related]
13. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Xing M; Wang X; Wang E; Gao L; Chang J Acta Biomater; 2018 May; 72():381-395. PubMed ID: 29627679 [TBL] [Abstract][Full Text] [Related]
14. Photo-crosslinkable, bone marrow-derived mesenchymal stem cells-encapsulating hydrogel based on collagen for osteogenic differentiation. Zhang T; Chen H; Zhang Y; Zan Y; Ni T; Liu M; Pei R Colloids Surf B Biointerfaces; 2019 Feb; 174():528-535. PubMed ID: 30500741 [TBL] [Abstract][Full Text] [Related]
15. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Saravanan S; Vimalraj S; Anuradha D Biomed Pharmacother; 2018 Nov; 107():908-917. PubMed ID: 30257403 [TBL] [Abstract][Full Text] [Related]
16. Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Kazemi-Aghdam F; Jahed V; Dehghan-Niri M; Ganji F; Vasheghani-Farahani E Carbohydr Polym; 2021 Oct; 269():118311. PubMed ID: 34294325 [TBL] [Abstract][Full Text] [Related]
17. Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Hong Y; Song H; Gong Y; Mao Z; Gao C; Shen J Acta Biomater; 2007 Jan; 3(1):23-31. PubMed ID: 16956800 [TBL] [Abstract][Full Text] [Related]
18. Improved accumulation of TGF-β by photopolymerized chitosan/silk protein bio-hydrogel matrix to improve differentiations of mesenchymal stem cells in articular cartilage tissue regeneration. Shao J; Ding Z; Li L; Chen Y; Zhu J; Qian Q J Photochem Photobiol B; 2020 Jan; 203():111744. PubMed ID: 31887637 [TBL] [Abstract][Full Text] [Related]
19. Dual Functional Lysozyme-Chitosan Conjugate for Tunable Degradation and Antibacterial Activity. Kim S; Fan J; Lee CS; Lee M ACS Appl Bio Mater; 2020 Apr; 3(4):2334-2343. PubMed ID: 32954226 [TBL] [Abstract][Full Text] [Related]
20. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/β-glycerophosphate hydrogel: in vitro and in vivo. Sun B; Ma W; Su F; Wang Y; Liu J; Wang D; Liu H J Mater Sci Mater Med; 2011 Sep; 22(9):2111-8. PubMed ID: 21744102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]