These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30421671)

  • 1. Simulated Protein Thermal Detection (SPTD) for Enzyme Thermostability Study and an Application Example for Pullulanase from Bacillus deramificans.
    Li JX; Wang SQ; Du QS; Wei H; Li XM; Meng JZ; Wang QY; Xie NZ; Huang RB; Chou KC
    Curr Pharm Des; 2018; 24(34):4023-4033. PubMed ID: 30421671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Hydrogen Bond Network (AHBN) and Applications for Improvement of Thermal Stability and pH-Sensitivity of Pullulanase from Bacillus naganoensis.
    Wang QY; Xie NZ; Du QS; Qin Y; Li JX; Meng JZ; Huang RB
    PLoS One; 2017; 12(1):e0169080. PubMed ID: 28103251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-bond-based protein engineering for the acidic adaptation of Bacillus acidopullulyticus pullulanase.
    Chen A; Xu T; Ge Y; Wang L; Tang W; Li S
    Enzyme Microb Technol; 2019 May; 124():79-83. PubMed ID: 30797482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli.
    Duan X; Zou C; Wu J
    Bioresour Technol; 2015 Oct; 194():137-43. PubMed ID: 26188556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the thermostability and catalytic efficiency of Bacillus deramificans pullulanase by site-directed mutagenesis.
    Duan X; Chen J; Wu J
    Appl Environ Microbiol; 2013 Jul; 79(13):4072-7. PubMed ID: 23624477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design.
    Chang M; Chu X; Lv J; Li Q; Tian J; Wu N
    PLoS One; 2016; 11(10):e0165006. PubMed ID: 27764201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine-Based Site-Directed Mutagenesis Increased Rigid β-Sheet Structure and Thermostability of Mesophilic 1,3-1,4-β-Glucanase.
    Niu C; Zhu L; Zhu P; Li Q
    J Agric Food Chem; 2015 Jun; 63(21):5249-56. PubMed ID: 25953154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the thermostability of Aspergillus niger α-l-rhamnosidase based on PoPMuSiC algorithm.
    Liao H; Gong JY; Yang Y; Jiang ZD; Zhu YB; Li LJ; Ni H; Li QB
    J Food Biochem; 2019 Aug; 43(8):e12945. PubMed ID: 31368575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of thermostability in bacterial 1,3-1,4-β-glucanases through spatial compartmentalization of mutational hotspots.
    Niu C; Zhu L; Xu X; Li Q
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1085-1097. PubMed ID: 27645297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation.
    Duan X; Wu J
    Appl Environ Microbiol; 2015 Mar; 81(6):1926-31. PubMed ID: 25556190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability.
    Li SF; Xu JY; Bao YJ; Zheng HC; Song H
    J Biotechnol; 2015 Sep; 210():8-14. PubMed ID: 26116135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket.
    Wang X; Nie Y; Xu Y
    J Agric Food Chem; 2018 Dec; 66(50):13236-13242. PubMed ID: 30499289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis.
    Zou C; Duan X; Wu J
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):495-504. PubMed ID: 26707948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving thermal and detergent stability of Bacillus stearothermophilus neopullulanase by rational enzyme design.
    Ece S; Evran S; Janda JO; Merkl R; Sterner R
    Protein Eng Des Sel; 2015 Jun; 28(6):147-51. PubMed ID: 25680359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability.
    Suzuki Y; Hatagaki K; Oda H
    Appl Microbiol Biotechnol; 1991 Mar; 34(6):707-14. PubMed ID: 1367521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of reduced malto-oligosaccharides on the thermal stability of pullulanase from Bacillus acidopullulyticus.
    Kusano S; Takahashi S; Fujimoto D; Sakano Y
    Carbohydr Res; 1990 May; 199(1):83-9. PubMed ID: 1696171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability.
    Bi J; Chen S; Zhao X; Nie Y; Xu Y
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7551-7562. PubMed ID: 32632476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism
    Pang B; Zhou L; Cui W; Liu Z; Zhou S; Xu J; Zhou Z
    J Agric Food Chem; 2019 Aug; 67(34):9611-9617. PubMed ID: 31385500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disorder prediction-based construct optimization improves activity and catalytic efficiency of Bacillus naganoensis pullulanase.
    Wang X; Nie Y; Mu X; Xu Y; Xiao R
    Sci Rep; 2016 Apr; 6():24574. PubMed ID: 27091115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.