These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 3042168)
1. Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Jiménez J; Benítez T Curr Genet; 1988 Jun; 13(6):461-9. PubMed ID: 3042168 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Ibeas JI; Jimenez J Appl Environ Microbiol; 1997 Jan; 63(1):7-12. PubMed ID: 8979333 [TBL] [Abstract][Full Text] [Related]
3. Deficiencies in mitochondrial DNA compromise the survival of yeast cells at critically high temperatures. Zubko EI; Zubko MK Microbiol Res; 2014; 169(2-3):185-95. PubMed ID: 23890722 [TBL] [Abstract][Full Text] [Related]
4. Induction of petite yeast mutants by membrane-active agents. Jiménez J; Longo E; Benítez T Appl Environ Microbiol; 1988 Dec; 54(12):3126-32. PubMed ID: 3066293 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast. Watson K; Dunlop G; Cavicchioli R FEBS Lett; 1984 Jul; 172(2):299-302. PubMed ID: 6378658 [TBL] [Abstract][Full Text] [Related]
6. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. Caspeta L; Nielsen J mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325 [TBL] [Abstract][Full Text] [Related]
8. Acetaldehyde and ethanol are responsible for mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) in flor yeasts. Castrejón F; Codón AC; Cubero B; Benítez T Syst Appl Microbiol; 2002 Oct; 25(3):462-7. PubMed ID: 12421085 [TBL] [Abstract][Full Text] [Related]
9. Induction of rho- mutations in yeast Saccharomyces cerevisiae by ethanol. Bandas EL; Zakharov IA Mutat Res; 1980 Jul; 71(2):193-9. PubMed ID: 6993934 [TBL] [Abstract][Full Text] [Related]
10. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Shi DJ; Wang CL; Wang KM J Ind Microbiol Biotechnol; 2009 Jan; 36(1):139-47. PubMed ID: 18846398 [TBL] [Abstract][Full Text] [Related]
11. Effects of T-2 toxin on induction of petite mutants and mitochondrial function in Saccharomyces cerevisiae. Schappert KT; Khachatourians GG Curr Genet; 1986; 10(9):671-6. PubMed ID: 3329043 [TBL] [Abstract][Full Text] [Related]
12. Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Martínez P; Codón AC; Pérez L; Benítez T Yeast; 1995 Nov; 11(14):1399-411. PubMed ID: 8585323 [TBL] [Abstract][Full Text] [Related]
13. Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Arroyo-López FN; Pérez-Torrado R; Querol A; Barrio E Food Microbiol; 2010 Aug; 27(5):628-37. PubMed ID: 20510781 [TBL] [Abstract][Full Text] [Related]
14. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Codón AC; Gasent-Ramírez JM; Benítez T Appl Environ Microbiol; 1995 Feb; 61(2):630-8. PubMed ID: 7574601 [TBL] [Abstract][Full Text] [Related]
15. Physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex. Kunicka-Styczyńska A; Rajkowska K J Appl Microbiol; 2011 Jun; 110(6):1538-49. PubMed ID: 21438966 [TBL] [Abstract][Full Text] [Related]
16. Role of mitochondria in ethanol tolerance of Saccharomyces cerevisiae. Aguilera A; Benítez T Arch Microbiol; 1985 Sep; 142(4):389-92. PubMed ID: 3904658 [TBL] [Abstract][Full Text] [Related]
17. Ethanol Induces Autophagy Regulated by Mitochondrial ROS in Jing H; Liu H; Zhang L; Gao J; Song H; Tan X J Microbiol Biotechnol; 2018 Dec; 28(12):1982-1991. PubMed ID: 30394045 [TBL] [Abstract][Full Text] [Related]
18. Susceptibility and resistance to ethanol in Saccharomyces strains isolated from wild and fermentative environments. Arroyo-López FN; Salvadó Z; Tronchoni J; Guillamón JM; Barrio E; Querol A Yeast; 2010 Dec; 27(12):1005-15. PubMed ID: 20824889 [TBL] [Abstract][Full Text] [Related]
19. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation. Chen S; Xu Y Appl Biochem Biotechnol; 2014 Aug; 173(7):1940-54. PubMed ID: 24879599 [TBL] [Abstract][Full Text] [Related]
20. Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Baerends RJ; Qiu JL; Rasmussen S; Nielsen HB; Brandt A Appl Environ Microbiol; 2009 Oct; 75(19):6055-61. PubMed ID: 19666729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]