BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30421906)

  • 1. Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene.
    Cho KM; Cho SY; Chong S; Koh HJ; Kim DW; Kim J; Jung HT
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42905-42914. PubMed ID: 30421906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-sensitivity ascorbic acid sensor using graphene sheet/graphene nanoribbon hybrid material as an enhanced electrochemical sensing platform.
    Lavanya J; Gomathi N
    Talanta; 2015 Nov; 144():655-61. PubMed ID: 26452874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-sensitive graphene sensor for measuring high vacuum pressure.
    Il Ahn S; Ra Jung J; Young Choi S; Hwa Son M; Jin Hong Y; Park JC
    Sci Rep; 2017 Oct; 7(1):12604. PubMed ID: 28974766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes.
    Liu M; Du Y; Miao YE; Ding Q; He S; Tjiu WW; Pan J; Liu T
    Nanoscale; 2015 Jan; 7(3):1037-46. PubMed ID: 25474256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study.
    Yamacli S; Avci M
    Physica B Condens Matter; 2023 Jan; 648():414438. PubMed ID: 36281340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized Reduced Graphene Oxide Thin Films for Ultrahigh CO
    Gupta M; Hawari HF; Kumar P; Burhanudin ZA; Tansu N
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33802318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of graphene nanoribbon devices.
    Guo J
    Nanoscale; 2012 Sep; 4(18):5538-48. PubMed ID: 22875475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NO
    Bhati VS; Sheela D; Roul B; Raliya R; Biswas P; Kumar M; Roy MS; Nanda KK; Krupanidhi SB; Kumar M
    Nanotechnology; 2019 May; 30(22):224001. PubMed ID: 30699385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically modified graphene films for high-performance optical NO2 sensors.
    Xing F; Zhang S; Yang Y; Jiang W; Liu Z; Zhu S; Yuan X
    Analyst; 2016 Aug; 141(15):4725-32. PubMed ID: 27265308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO
    Pan F; Li B; Sarnello E; Fei Y; Gang Y; Xiang X; Du Z; Zhang P; Wang G; Nguyen HT; Li T; Hu YH; Zhou HC; Li Y
    ACS Nano; 2020 May; 14(5):5506-5516. PubMed ID: 32330000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and electronic structure of encapsulated graphene nanoribbons in carbon nanotube.
    Mandal B; Sarkar S; Sarkar P
    J Phys Chem A; 2013 Sep; 117(36):8568-75. PubMed ID: 23675973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications.
    Tung TT; Pham-Huu C; Janowska I; Kim T; Castro M; Feller JF
    Small; 2015 Jul; 11(28):3485-93. PubMed ID: 25808714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transport isolation by orbital hybridization transformation toward graphene nanoribbon-based nanostructure integration.
    Ye S; Zhu R; Huang Q; He J; Wang H; Lv Y; Chang S
    Nanotechnology; 2018 Nov; 29(45):455704. PubMed ID: 30136649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The finite-size effect on the transport properties in edge-modified graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Huang Y; Chen X; Lu W
    J Comput Chem; 2011 Jun; 32(8):1753-9. PubMed ID: 21351109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast and Highly Sensitive Chemically Functionalized Graphene Oxide-Based Humidity Sensors: Harnessing Device Performances via the Supramolecular Approach.
    Anichini C; Aliprandi A; Gali SM; Liscio F; Morandi V; Minoia A; Beljonne D; Ciesielski A; Samorì P
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44017-44025. PubMed ID: 32880164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium Decorated Graphene-Nanoribbon Network for Enhanced Gas Sensing.
    Kuru C; Choi D; Choi C; Kim YJ; Jin S
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2464-7. PubMed ID: 26413688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of low-dimension carbon-based electrodes on the performance of SnO
    Qi W; Li W; Sun Y; Guo J; Xie D; Cai L; Zhu H; Xiang L; Ren T
    Nanotechnology; 2019 Aug; 30(34):345503. PubMed ID: 31048568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.