BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 30421928)

  • 1. SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles.
    Živanović V; Kochovski Z; Arenz C; Lu Y; Kneipp J
    J Phys Chem Lett; 2018 Dec; 9(23):6767-6772. PubMed ID: 30421928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Mode Dark Field and Surface-Enhanced Raman Scattering Liposomes for Lymphoma and Leukemia Cell Imaging.
    Ip S; MacLaughlin CM; Joseph M; Mullaithilaga N; Yang G; Wang C; Walker GC
    Langmuir; 2019 Feb; 35(5):1534-1543. PubMed ID: 30350697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Structure and Interactions of Lipids in the Outer Membrane of Living Cells Based on Surface-Enhanced Raman Scattering and Liposome Models.
    Živanović V; Milewska A; Leosson K; Kneipp J
    Anal Chem; 2021 Jul; 93(29):10106-10113. PubMed ID: 34264630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Interaction of Ceramide-Containing Liposomes with Gold Nanoparticles as Characterized by SERS and Cryo-EM.
    Feng Y; Kochovski Z; Arenz C; Lu Y; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2022 Aug; 126(31):13237-13246. PubMed ID: 35983312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The presence of uncoated gold nanoparticle aggregates may alter the phase of phosphatidylcholine lipid as evidenced by vibrational spectroscopies.
    Pašalić L; Liu Q; Vukosav P; Mišić Radić T; Azziz A; Majdinasab M; Edely M; de la Chapelle ML; Bakarić D
    J Liposome Res; 2024 Mar; 34(1):113-123. PubMed ID: 37493091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions.
    Dichello GA; Fukuda T; Maekawa T; Whitby RLD; Mikhalovsky SV; Alavijeh M; Pannala AS; Sarker DK
    Eur J Pharm Sci; 2017 Jul; 105():55-63. PubMed ID: 28476616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid Bilayer Softening Due to Hydrophobic Gold Nanoparticle Inclusions.
    Chakraborty S; Abbasi A; Bothun GD; Nagao M; Kitchens CL
    Langmuir; 2018 Nov; 34(44):13416-13425. PubMed ID: 30350687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate.
    Liu X; Huan S; Bu Y; Shen G; Yu R
    Talanta; 2008 May; 75(3):797-803. PubMed ID: 18585149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Gold Nanoparticle Aggregation on Lipid Membranes Using Nanosized Liposomes To Increase Steric Hindrance.
    Sugikawa K; Matsuo K; Ikeda A
    Langmuir; 2019 Jan; 35(1):229-236. PubMed ID: 30517012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition.
    Wang F; Liu J
    Nanoscale; 2015 Oct; 7(38):15599-604. PubMed ID: 26372064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Nanosensing of Lipid Accumulation due to Enzyme Inhibition in Live Cells.
    Živanović V; Seifert S; Drescher D; Schrade P; Werner S; Guttmann P; Szekeres GP; Bachmann S; Schneider G; Arenz C; Kneipp J
    ACS Nano; 2019 Aug; 13(8):9363-9375. PubMed ID: 31314989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles.
    Ye Y; Liu H; Yang L; Liu J
    Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection.
    Ma X; Xia Y; Ni L; Song L; Wang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():657-61. PubMed ID: 24368285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin-lipid stabilized gold nanoparticles for surface enhanced Raman scattering based imaging.
    Tam NC; McVeigh PZ; MacDonald TD; Farhadi A; Wilson BC; Zheng G
    Bioconjug Chem; 2012 Sep; 23(9):1726-30. PubMed ID: 22876736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.
    Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.