These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 30421934)
41. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate. Zhang J; Milzetti J; Leroy F; Müller-Plathe F J Chem Phys; 2017 Mar; 146(11):114503. PubMed ID: 28330371 [TBL] [Abstract][Full Text] [Related]
42. A review on suppression and utilization of the coffee-ring effect. Mampallil D; Eral HB Adv Colloid Interface Sci; 2018 Feb; 252():38-54. PubMed ID: 29310771 [TBL] [Abstract][Full Text] [Related]
44. Self-assembly of highly ordered micro- and nanoparticle deposits. Zargartalebi H; Hejazi SH; Sanati-Nezhad A Nat Commun; 2022 Jun; 13(1):3085. PubMed ID: 35654770 [TBL] [Abstract][Full Text] [Related]
45. Physics of self-assembly and morpho-topological changes of Klebsiella pneumoniae in desiccating sessile droplets. Rasheed A; Hegde O; Chatterjee R; Sampathirao SR; Chakravortty D; Basu S J Colloid Interface Sci; 2023 Jan; 629(Pt B):620-631. PubMed ID: 36183643 [TBL] [Abstract][Full Text] [Related]
46. Investigating the Effect of Antibody-Antigen Reactions on the Internal Convection in a Sessile Droplet via Microparticle Image Velocimetry and DLVO Analysis. Rathaur VS; Kumar S; Panigrahi PK; Panda S Langmuir; 2020 Aug; 36(30):8826-8838. PubMed ID: 32628853 [TBL] [Abstract][Full Text] [Related]
47. Direct observation of nanoparticle multiple-ring pattern formation during droplet evaporation with dark-field microscopy. Li H; Luo H; Zhang Z; Li Y; Xiong B; Qiao C; Cao X; Wang T; He Y; Jing G Phys Chem Chem Phys; 2016 May; 18(18):13018-25. PubMed ID: 27108655 [TBL] [Abstract][Full Text] [Related]
48. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles. Shi J; Yang L; Bain CD ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186 [TBL] [Abstract][Full Text] [Related]
49. Self-Assembly of Ordered Microparticle Monolayers from Drying a Droplet on a Liquid Substrate. Li W; Ji W; Lan D; Wang Y J Phys Chem Lett; 2019 Oct; 10(20):6184-6188. PubMed ID: 31577443 [TBL] [Abstract][Full Text] [Related]
50. Elimination of the coffee-ring effect by promoting particle adsorption and long-range interaction. Crivoi A; Duan F Langmuir; 2013 Oct; 29(39):12067-74. PubMed ID: 24015843 [TBL] [Abstract][Full Text] [Related]
51. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation. Crivoi A; Zhong X; Duan F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032302. PubMed ID: 26465468 [TBL] [Abstract][Full Text] [Related]
52. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets. Amjad M; Yang Y; Raza G; Gao H; Zhang J; Zhou L; Du X; Wen D J Colloid Interface Sci; 2017 Nov; 506():83-92. PubMed ID: 28728033 [TBL] [Abstract][Full Text] [Related]
53. Multidirectional colloidal assembly in concurrent electric and magnetic fields. Bharti B; Kogler F; Hall CK; Klapp SH; Velev OD Soft Matter; 2016 Oct; 12(37):7747-58. PubMed ID: 27537850 [TBL] [Abstract][Full Text] [Related]
54. Interfacial Targeting of Sessile Droplets Using Electrospray. Ghafouri A; Zhao M; Singler TJ; Yong X; Chiarot PR Langmuir; 2018 Jun; 34(25):7445-7454. PubMed ID: 29856637 [TBL] [Abstract][Full Text] [Related]
55. Drying of colloidal droplets on superhydrophobic surfaces. Chen L; Evans JR J Colloid Interface Sci; 2010 Nov; 351(1):283-7. PubMed ID: 20692671 [TBL] [Abstract][Full Text] [Related]
56. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field. Takei T; Sakoguchi S; Yoshida M J Biosci Bioeng; 2018 Nov; 126(5):649-652. PubMed ID: 29914802 [TBL] [Abstract][Full Text] [Related]
57. Printing small dots from large drops. Talbot EL; Yow HN; Yang L; Berson A; Biggs SR; Bain CD ACS Appl Mater Interfaces; 2015 Feb; 7(6):3782-90. PubMed ID: 25614937 [TBL] [Abstract][Full Text] [Related]
58. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627 [TBL] [Abstract][Full Text] [Related]
59. Comment on "Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport". Hodges CS; Tangparitkul SM Langmuir; 2019 Jul; 35(30):9988-9990. PubMed ID: 31322888 [TBL] [Abstract][Full Text] [Related]
60. Rate-dependent interface capture beyond the coffee-ring effect. Li Y; Yang Q; Li M; Song Y Sci Rep; 2016 Apr; 6():24628. PubMed ID: 27090820 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]