These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66. Biosensing based on magnetically induced self-assembly of particles in magnetic colloids. Yang Y; Morimoto Y; Takamura T; Sandhu A J Nanosci Nanotechnol; 2012 Mar; 12(3):2081-8. PubMed ID: 22755024 [TBL] [Abstract][Full Text] [Related]
67. Multi-axis alignment of Rod-like cellulose nanocrystals in drying droplets. Pritchard CQ; Navarro F; Roman M; Bortner MJ J Colloid Interface Sci; 2021 Dec; 603():450-458. PubMed ID: 34214721 [TBL] [Abstract][Full Text] [Related]
68. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. Saroj SK; Panigrahi PK Langmuir; 2021 Dec; 37(51):14950-14967. PubMed ID: 34910880 [TBL] [Abstract][Full Text] [Related]
69. Drying-mediated patterns in colloid-polymer suspensions. Ryu SA; Kim JY; Kim SY; Weon BM Sci Rep; 2017 Apr; 7(1):1079. PubMed ID: 28439069 [TBL] [Abstract][Full Text] [Related]
70. Patterning of colloids into spirals via confined drying. Mondal R; Basavaraj MG Soft Matter; 2020 Apr; 16(15):3753-3761. PubMed ID: 32239019 [TBL] [Abstract][Full Text] [Related]
71. Crack formation and prevention in colloidal drops. Kim JY; Cho K; Ryu SA; Kim SY; Weon BM Sci Rep; 2015 Aug; 5():13166. PubMed ID: 26279317 [TBL] [Abstract][Full Text] [Related]
72. Control of buckling in colloidal droplets during evaporation-induced assembly of nanoparticles. Bahadur J; Sen D; Mazumder S; Paul B; Bhatt H; Singh SG Langmuir; 2012 Jan; 28(3):1914-23. PubMed ID: 22185181 [TBL] [Abstract][Full Text] [Related]
73. Ultrafast Self-Assembly of Colloidal Photonic Crystals during Low-Pressure-Assisted Evaporation of Droplets. Zhang C; Li W; Wang Y J Phys Chem Lett; 2022 May; 13(17):3776-3780. PubMed ID: 35446036 [TBL] [Abstract][Full Text] [Related]
74. Versatile strategy for homogeneous drying patterns of dispersed particles. Rey M; Walter J; Harrer J; Perez CM; Chiera S; Nair S; Ickler M; Fuchs A; Michaud M; Uttinger MJ; Schofield AB; Thijssen JHJ; Distaso M; Peukert W; Vogel N Nat Commun; 2022 May; 13(1):2840. PubMed ID: 35606364 [TBL] [Abstract][Full Text] [Related]
75. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces. Debuisson D; Merlen A; Senez V; Arscott S Langmuir; 2016 Mar; 32(11):2679-86. PubMed ID: 26950673 [TBL] [Abstract][Full Text] [Related]
76. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. Gençer A; Schütz C; Thielemans W Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313 [TBL] [Abstract][Full Text] [Related]
77. Evaporation and morphological patterns of bi-dispersed colloidal droplets on hydrophilic and hydrophobic surfaces. Iqbal R; Majhy B; Shen AQ; Sen AK Soft Matter; 2018 Dec; 14(48):9901-9909. PubMed ID: 30474686 [TBL] [Abstract][Full Text] [Related]
78. Morphological transitions and buckling characteristics in a nanoparticle-laden sessile droplet resting on a heated hydrophobic substrate. Bansal L; Miglani A; Basu S Phys Rev E; 2016 Apr; 93():042605. PubMed ID: 27176350 [TBL] [Abstract][Full Text] [Related]
79. Dendritic nanoparticle self-assembly from drying a sessile nanofluid droplet. Ren J; Crivoi A; Duan F Phys Chem Chem Phys; 2021 Jul; 23(29):15774-15783. PubMed ID: 34286762 [TBL] [Abstract][Full Text] [Related]
80. Spatio-temporally controlled suppression of the coffee-ring phenomenon by cellulose nanofibers. Koyama N; Hanasaki I Soft Matter; 2021 May; 17(18):4826-4833. PubMed ID: 33876787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]