These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30422615)

  • 1. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
    Lee J; Nakouzi E; Xiao D; Wu Z; Song M; Ophus C; Chun J; Li D
    Small; 2019 Aug; 15(33):e1901966. PubMed ID: 31225719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembly of CoPt Magnetic Nanoparticle Arrays and its Underlying Forces.
    Bian B; Chen G; Zheng Q; Du J; Lu H; Liu JP; Hu Y; Zhang Z
    Small; 2018 Aug; 14(34):e1801184. PubMed ID: 30058262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time imaging of metallic supraparticle assembly during nanoparticle synthesis.
    Wang M; Park C; Woehl TJ
    Nanoscale; 2022 Jan; 14(2):312-319. PubMed ID: 34928292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of particle shape and surface roughness on van der Waals interactions and coupling to dynamics in nanocrystals.
    Lee J; Nakouzi E; Heo J; Legg BA; Schenter GK; Li D; Park C; Ma H; Chun J
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1974-1983. PubMed ID: 37690305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of ligated gold nanoparticles: phenomenological modeling and computer simulations.
    Khan SJ; Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2009 Dec; 25(24):13861-8. PubMed ID: 19441832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interparticle Forces Underlying Nanoparticle Self-Assemblies.
    Luo D; Yan C; Wang T
    Small; 2015 Dec; 11(45):5984-6008. PubMed ID: 26436692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell.
    Powers AS; Liao HG; Raja SN; Bronstein ND; Alivisatos AP; Zheng H
    Nano Lett; 2017 Jan; 17(1):15-20. PubMed ID: 27995796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces.
    Tan SF; Raj S; Bisht G; Annadata HV; Nijhuis CA; Král P; Mirsaidov U
    Adv Mater; 2018 Apr; 30(16):e1707077. PubMed ID: 29537111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible and Precise Self-Assembly of Janus Metal-Organosilica Nanoparticles through a Linker-Free Approach.
    Hu H; Ji F; Xu Y; Yu J; Liu Q; Chen L; Chen Q; Wen P; Lifshitz Y; Wang Y; Zhang Q; Lee ST
    ACS Nano; 2016 Aug; 10(8):7323-30. PubMed ID: 27392069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of non-equilibrium force measurements involving deformable drops and bubbles.
    Chan DY; Klaseboer E; Manica R
    Adv Colloid Interface Sci; 2011 Jul; 165(2):70-90. PubMed ID: 21257141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template-assisted nano-patterning of magnetic core-shell particles in gradient fields.
    Xue X; Furlani EP
    Phys Chem Chem Phys; 2014 Jul; 16(26):13306-17. PubMed ID: 24871617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals.
    Zhu H; Fan Z; Yu L; Wilson MA; Nagaoka Y; Eggert D; Cao C; Liu Y; Wei Z; Wang X; He J; Zhao J; Li R; Wang Z; Grünwald M; Chen O
    J Am Chem Soc; 2019 Apr; 141(14):6013-6021. PubMed ID: 30889948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.
    La Torre A; Gimenez-Lopez Mdel C; Fay MW; Lucas CH; Brown PD; Khlobystov AN
    Small; 2015 Jun; 11(23):2756-61. PubMed ID: 25689488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Templated Assembly of Nanoparticle Filaments within Nanochannels.
    Miele E; Raj S; Baraissov Z; Král P; Mirsaidov U
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28752593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.