These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 30422615)

  • 21. On Correlation Effect of the Van-der-Waals and Intramolecular Forces for the Nucleotide Chain - Metallic Nanoparticles - Carbon Nanotube Binding.
    Khusenov MA; Dushanov EB; Kholmurodov KhT; Zaki MM; Sweilam NH
    Open Biochem J; 2016; 10():17-26. PubMed ID: 27099634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering.
    Lu C; Akey AJ; Dahlman CJ; Zhang D; Herman IP
    J Am Chem Soc; 2012 Nov; 134(45):18732-8. PubMed ID: 23034055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compartmentalization of gold nanoparticle clusters in hollow silica spheres and their assembly induced by an external electric field.
    Watanabe K; Welling TAJ; Sadighikia S; Ishii H; Imhof A; van Huis MA; van Blaaderen A; Nagao D
    J Colloid Interface Sci; 2020 Apr; 566():202-210. PubMed ID: 32006816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refocusing
    Woehl T
    ACS Nano; 2019 Nov; 13(11):12272-12279. PubMed ID: 31738051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Situ Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices.
    Kim J; Jones MR; Ou Z; Chen Q
    ACS Nano; 2016 Nov; 10(11):9801-9808. PubMed ID: 27723304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by poisson statistical analysis.
    Abu-Lail NI; Camesano TA
    Langmuir; 2006 Aug; 22(17):7296-301. PubMed ID: 16893229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures.
    Yang F; Liu X; Yang Z
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14671-14678. PubMed ID: 33843119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticle processing: Understanding and controlling aggregation.
    Shrestha S; Wang B; Dutta P
    Adv Colloid Interface Sci; 2020 May; 279():102162. PubMed ID: 32334131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe.
    Chen Z; Moore J; Radtke G; Sirringhaus H; O'Brien S
    J Am Chem Soc; 2007 Dec; 129(50):15702-9. PubMed ID: 18034489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior.
    Cordeiro MA; Leite ER; Stach EA
    Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Study of the Forces Driving Aggregation of Ultrasmall Nanoparticles in Biological Fluids.
    Hassan SA
    ACS Nano; 2017 Apr; 11(4):4145-4154. PubMed ID: 28314103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trends in mica-mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment.
    Li D; Chun J; Xiao D; Zhou W; Cai H; Zhang L; Rosso KM; Mundy CJ; Schenter GK; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):7537-7542. PubMed ID: 28679632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic-assembly mechanism of superparamagneto-plasmonic nanoparticles on a charged surface.
    Tran VT; Zhou H; Lee S; Hong SC; Kim J; Jeong SY; Lee J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8650-8. PubMed ID: 25856000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic structure and cluster formation in confined nanofluids under the action of an external force field.
    Ben-Abdallah P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041407. PubMed ID: 17155057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation.
    Dukhin S; Zhu C; Dave RN; Yu Q
    Adv Colloid Interface Sci; 2005 Jun; 114-115():119-31. PubMed ID: 15936286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of oxide-supported metal clusters into ring-like structures.
    Meinander K; Nordlund K; Keinonen J
    Nanotechnology; 2013 Jan; 24(3):035602. PubMed ID: 23263704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.