These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 30422619)

  • 1. Atomic- and Molecular-Resolution Mapping of Solid-Liquid Interfaces by 3D Atomic Force Microscopy.
    Fukuma T; Garcia R
    ACS Nano; 2018 Dec; 12(12):11785-11797. PubMed ID: 30422619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water distribution at solid/liquid interfaces visualized by frequency modulation atomic force microscopy.
    Fukuma T
    Sci Technol Adv Mater; 2010 Jun; 11(3):033003. PubMed ID: 27877337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy.
    Fukuma T
    Microscopy (Oxf); 2020 Dec; 69(6):340-349. PubMed ID: 32780817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subnanometer-scale imaging of nanobio-interfaces by frequency modulation atomic force microscopy.
    Fukuma T
    Biochem Soc Trans; 2020 Aug; 48(4):1675-1682. PubMed ID: 32779720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy.
    Söngen H; Reischl B; Miyata K; Bechstein R; Raiteri P; Rohl AL; Gale JD; Fukuma T; Kühnle A
    Phys Rev Lett; 2018 Mar; 120(11):116101. PubMed ID: 29601750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.
    Kobayashi K; Liang Y; Amano K; Murata S; Matsuoka T; Takahashi S; Nishi N; Sakka T
    Langmuir; 2016 Apr; 32(15):3608-16. PubMed ID: 27018633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces.
    Miyazawa K; Watkins M; Shluger AL; Fukuma T
    Nanotechnology; 2017 Jun; 28(24):245701. PubMed ID: 28481216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A relationship between three-dimensional surface hydration structures and force distribution measured by atomic force microscopy.
    Miyazawa K; Kobayashi N; Watkins M; Shluger AL; Amano K; Fukuma T
    Nanoscale; 2016 Apr; 8(13):7334-42. PubMed ID: 26980273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing Solution Structure at Solid-Liquid Interfaces using Three-Dimensional Fast Force Mapping.
    Nakouzi E; Yadav S; Legg BA; Zhang S; Tao J; Mundy CJ; Schenter GK; Chun J; De Yoreo JJ
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34424235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy.
    Yurtsever A; Wang PX; Priante F; Morais Jaques Y; Miyata K; MacLachlan MJ; Foster AS; Fukuma T
    Small Methods; 2022 Sep; 6(9):e2200320. PubMed ID: 35686343
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Uhlig MR; Garcia R
    Nano Lett; 2021 Jul; 21(13):5593-5598. PubMed ID: 33983752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas molecules sandwiched in hydration layers at graphite/water interfaces.
    Teshima H; Li QY; Takata Y; Takahashi K
    Phys Chem Chem Phys; 2020 Jun; 22(24):13629-13636. PubMed ID: 32519700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anharmonicity, solvation forces, and resolution in atomic force microscopy at the solid-liquid interface.
    Voïtchovsky K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022407. PubMed ID: 24032849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water.
    Cao D; Song Y; Tang B; Xu L
    Front Chem; 2021; 9():745446. PubMed ID: 34631666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Resolution of Calcium and Oxygen Sublattices of Calcite in Ambient Conditions by Atomic Force Microscopy Using qPlus Sensors with Sapphire Tips.
    Wastl DS; Judmann M; Weymouth AJ; Giessibl FJ
    ACS Nano; 2015; 9(4):3858-65. PubMed ID: 25816927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy.
    Siretanu I; van den Ende D; Mugele F
    Nanoscale; 2016 Apr; 8(15):8220-7. PubMed ID: 27030282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials.
    Garcia R
    ACS Nano; 2023 Jan; 17(1):51-69. PubMed ID: 36507725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Electrochemical Atomic Force Microscopy: From Interfaces to Interphases.
    Wang WW; Yan H; Gu Y; Yan J; Mao BW
    Annu Rev Anal Chem (Palo Alto Calif); 2024 Jul; 17(1):103-126. PubMed ID: 38603469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Identification at the Solid-Liquid Interface.
    Söngen H; Marutschke C; Spijker P; Holmgren E; Hermes I; Bechstein R; Klassen S; Tracey J; Foster AS; Kühnle A
    Langmuir; 2017 Jan; 33(1):125-129. PubMed ID: 27960056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.