These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30422664)

  • 21. Linewidth enhancement in spasers and plasmonic nanolasers.
    Ginzburg P; Zayats AV
    Opt Express; 2013 Jan; 21(2):2147-53. PubMed ID: 23389195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling.
    Qian H; Li S; Hsu SW; Chen CF; Tian F; Tao AR; Liu Z
    Nat Commun; 2021 May; 12(1):3111. PubMed ID: 34035272
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers.
    Chung YC; Cheng PJ; Chou YH; Chou BT; Hong KB; Shih JH; Lin SD; Lu TC; Lin TR
    Sci Rep; 2017 Jan; 7():39813. PubMed ID: 28045127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of nanolasers.
    Ma RM; Oulton RF
    Nat Nanotechnol; 2019 Jan; 14(1):12-22. PubMed ID: 30559486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic III-V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects.
    Li N; Liu K; Sorger VJ; Sadana DK
    Sci Rep; 2015 Sep; 5():14067. PubMed ID: 26369698
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing.
    Lu YJ; Wang CY; Kim J; Chen HY; Lu MY; Chen YC; Chang WH; Chen LJ; Stockman MI; Shih CK; Gwo S
    Nano Lett; 2014 Aug; 14(8):4381-8. PubMed ID: 25029207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theory for bowtie plasmonic nanolasers.
    Chang SW; Ni CY; Chuang SL
    Opt Express; 2008 Jul; 16(14):10580-95. PubMed ID: 18607473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform.
    McPolin CP; Bouillard JS; Vilain S; Krasavin AV; Dickson W; O'Connor D; Wurtz GA; Justice J; Corbett B; Zayats AV
    Nat Commun; 2016 Aug; 7():12409. PubMed ID: 27491686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-inorganic CsPbBr
    Chen Y; Yu M; Ye S; Song J; Qu J
    Nanoscale; 2018 Apr; 10(14):6704-6711. PubMed ID: 29589613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-exciton coupling dynamics and plasmonic lasing in a core-shell nanocavity.
    Wang R; Xu C; You D; Wang X; Chen J; Shi Z; Cui Q; Qiu T
    Nanoscale; 2021 Apr; 13(14):6780-6785. PubMed ID: 33885480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current Modulation of Plasmonic Nanolasers by Breaking Reciprocity on Hybrid Graphene-Insulator-Metal Platforms.
    Li H; Huang ZT; Hong KB; Hsu CY; Chen JW; Cheng CW; Chen KP; Lin TR; Gwo SJ; Lu TC
    Adv Sci (Weinh); 2020 Dec; 7(24):2001823. PubMed ID: 33344123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of an ultrafast plasmonic nanolaser for high-intensity broadband emission operating at room temperature.
    Zhou P; Jin L; Liang K; Liang X; Li J; Deng X; Wang Y; Guo J; Yu L; Zhang J
    Opt Lett; 2024 Jun; 49(11):2930-2933. PubMed ID: 38824295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.
    Huang X; Jiang C; Du C; Jing L; Liu M; Hu W; Wang ZL
    ACS Nano; 2016 Dec; 10(12):11420-11427. PubMed ID: 28024322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A room temperature low-threshold ultraviolet plasmonic nanolaser.
    Zhang Q; Li G; Liu X; Qian F; Li Y; Sum TC; Lieber CM; Xiong Q
    Nat Commun; 2014 Sep; 5():4953. PubMed ID: 25247634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers.
    Cheng PJ; Zheng QY; Hsu CY; Li H; Hong KB; Zhu Y; Cui Q; Xu C; Lu TC; Lin TR
    Nanoscale Res Lett; 2020 Mar; 15(1):66. PubMed ID: 32227260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmon-Assisted Nd(3+)-Based Solid-State Nanolaser.
    Molina P; Yraola E; Ramírez MO; Tserkezis C; Plaza JL; Aizpurua J; Bravo-Abad J; Bausá LE
    Nano Lett; 2016 Feb; 16(2):895-9. PubMed ID: 26751848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasmall InGa(As)P Dielectric and Plasmonic Nanolasers.
    Sarkar D; Cho S; Yan H; Martino N; Dannenberg PH; Yun SH
    ACS Nano; 2023 Aug; 17(16):16048-16055. PubMed ID: 37523588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmonic Nanolasers Enhanced by Hybrid Graphene-Insulator-Metal Structures.
    Li H; Li JH; Hong KB; Yu MW; Chung YC; Hsu CY; Yang JH; Cheng CW; Huang ZT; Chen KP; Lin TR; Gwo S; Lu TC
    Nano Lett; 2019 Aug; 19(8):5017-5024. PubMed ID: 31268338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.