These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30423083)

  • 1. Learning structural motif representations for efficient protein structure search.
    Liu Y; Ye Q; Wang L; Peng J
    Bioinformatics; 2018 Sep; 34(17):i773-i780. PubMed ID: 30423083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.
    Budowski-Tal I; Nov Y; Kolodny R
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3481-6. PubMed ID: 20133727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepFold: enhancing protein structure prediction through optimized loss functions, improved template features, and re-optimized energy function.
    Lee JW; Won JH; Jeon S; Choo Y; Yeon Y; Oh JS; Kim M; Kim S; Joung I; Jang C; Lee SJ; Kim TH; Jin KH; Song G; Kim ES; Yoo J; Paek E; Noh YK; Joo K
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 37995286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure motif discovery and mining the PDB.
    Jonassen I; Eidhammer I; Conklin D; Taylor WR
    Bioinformatics; 2002 Feb; 18(2):362-7. PubMed ID: 11847094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining evolutionary and structural information for local protein structure prediction.
    Pei J; Grishin NV
    Proteins; 2004 Sep; 56(4):782-94. PubMed ID: 15281130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate Ab Initio Protein structure prediction using deep learning potentials.
    Pearce R; Li Y; Omenn GS; Zhang Y
    PLoS Comput Biol; 2022 Sep; 18(9):e1010539. PubMed ID: 36112717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding motifs using DNA images derived from sparse representations.
    Chu SK; Stormo GD
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37294804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of putative domain linkers by a neural network - application to a large sequence database.
    Miyazaki S; Kuroda Y; Yokoyama S
    BMC Bioinformatics; 2006 Jun; 7():323. PubMed ID: 16800897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiary alphabet for the observable protein structural universe.
    Mackenzie CO; Zhou J; Grigoryan G
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7438-E7447. PubMed ID: 27810958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and accurate non-sequential protein structure alignment using a new asymmetric linear sum assignment heuristic.
    Brown P; Pullan W; Yang Y; Zhou Y
    Bioinformatics; 2016 Feb; 32(3):370-7. PubMed ID: 26454279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fingerprinting protein structures effectively and efficiently.
    Cui X; Li SC; He L; Li M
    Bioinformatics; 2014 Apr; 30(7):949-55. PubMed ID: 24292940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.