These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30423100)

  • 1. Single cell network analysis with a mixture of Nested Effects Models.
    Pirkl M; Beerenwinkel N
    Bioinformatics; 2018 Sep; 34(17):i964-i971. PubMed ID: 30423100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NEMix: single-cell nested effects models for probabilistic pathway stimulation.
    Siebourg-Polster J; Mudrak D; Emmenlauer M; Rämö P; Dehio C; Greber U; Fröhlich H; Beerenwinkel N
    PLoS Comput Biol; 2015 Apr; 11(4):e1004078. PubMed ID: 25879530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring perturbation profiles of cancer samples.
    Pirkl M; Beerenwinkel N
    Bioinformatics; 2021 Aug; 37(16):2441-2449. PubMed ID: 33617647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell regulome data analysis by SCRAT.
    Ji Z; Zhou W; Ji H
    Bioinformatics; 2017 Sep; 33(18):2930-2932. PubMed ID: 28505247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation.
    Wangwu J; Sun Z; Lin Z
    Bioinformatics; 2021 Nov; 37(21):3874-3880. PubMed ID: 34086847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale inference of conjunctive Bayesian networks.
    Montazeri H; Kuipers J; Kouyos R; Böni J; Yerly S; Klimkait T; Aubert V; Günthard HF; Beerenwinkel N;
    Bioinformatics; 2016 Sep; 32(17):i727-i735. PubMed ID: 27587695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDClust: an EM-MM hybrid method for cell clustering in multiple-subject single-cell RNA sequencing.
    Wei X; Li Z; Ji H; Wu H
    Bioinformatics; 2022 May; 38(10):2692-2699. PubMed ID: 35561178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phitest for analyzing the homogeneity of single-cell populations.
    Li WV
    Bioinformatics; 2022 Apr; 38(9):2639-2641. PubMed ID: 35238346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of batch effects using distribution-matching residual networks.
    Shaham U; Stanton KP; Zhao J; Li H; Raddassi K; Montgomery R; Kluger Y
    Bioinformatics; 2017 Aug; 33(16):2539-2546. PubMed ID: 28419223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal transport improves cell-cell similarity inference in single-cell omics data.
    Huizing GJ; Peyré G; Cantini L
    Bioinformatics; 2022 Apr; 38(8):2169-2177. PubMed ID: 35157031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BnpC: Bayesian non-parametric clustering of single-cell mutation profiles.
    Borgsmüller N; Bonet J; Marass F; Gonzalez-Perez A; Lopez-Bigas N; Beerenwinkel N
    Bioinformatics; 2020 Dec; 36(19):4854-4859. PubMed ID: 32592465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved pathway reconstruction from RNA interference screens by exploiting off-target effects.
    Srivatsa S; Kuipers J; Schmich F; Eicher S; Emmenlauer M; Dehio C; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(13):i519-i527. PubMed ID: 29950000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.