These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 30423294)

  • 1. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells.
    Jones CL; Stevens BM; D'Alessandro A; Reisz JA; Culp-Hill R; Nemkov T; Pei S; Khan N; Adane B; Ye H; Krug A; Reinhold D; Smith C; DeGregori J; Pollyea DA; Jordan CT
    Cancer Cell; 2018 Nov; 34(5):724-740.e4. PubMed ID: 30423294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can we selectively target AML stem cells?
    Jordan CT
    Best Pract Res Clin Haematol; 2019 Dec; 32(4):101100. PubMed ID: 31779978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia.
    Pollyea DA; Stevens BM; Jones CL; Winters A; Pei S; Minhajuddin M; D'Alessandro A; Culp-Hill R; Riemondy KA; Gillen AE; Hesselberth JR; Abbott D; Schatz D; Gutman JA; Purev E; Smith C; Jordan CT
    Nat Med; 2018 Dec; 24(12):1859-1866. PubMed ID: 30420752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells.
    Jones CL; Stevens BM; Pollyea DA; Culp-Hill R; Reisz JA; Nemkov T; Gehrke S; Gamboni F; Krug A; Winters A; Pei S; Gustafson A; Ye H; Inguva A; Amaya M; Minhajuddin M; Abbott D; Becker MW; DeGregori J; Smith CA; D'Alessandro A; Jordan CT
    Cell Stem Cell; 2020 Nov; 27(5):748-764.e4. PubMed ID: 32822582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium.
    Sheth AI; Althoff MJ; Tolison H; Engel K; Amaya ML; Krug AE; Young TN; Minhajuddin M; Pei S; Patel SB; Winters A; Miller R; Shelton IT; St-Germain J; Ling T; Jones CL; Raught B; Gillen AE; Ransom M; Staggs S; Smith CA; Pollyea DA; Stevens BM; Jordan CT
    Cancer Discov; 2024 Oct; 14(10):1922-1939. PubMed ID: 38787341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the metabolic vulnerability of acute myeloid leukemia blasts with a combination of venetoclax and 8-chloro-adenosine.
    Buettner R; Nguyen LXT; Morales C; Chen MH; Wu X; Chen LS; Hoang DH; Hernandez Vargas S; Pullarkat V; Gandhi V; Marcucci G; Rosen ST
    J Hematol Oncol; 2021 Apr; 14(1):70. PubMed ID: 33902674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shutting Down Acute Myeloid Leukemia and Myelodysplastic Syndrome with BCL-2 Family Protein Inhibition.
    Sharma P; Pollyea DA
    Curr Hematol Malig Rep; 2018 Aug; 13(4):256-264. PubMed ID: 29982865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia.
    Grenier A; Poulain L; Mondesir J; Jacquel A; Bosc C; Stuani L; Mouche S; Larrue C; Sahal A; Birsen R; Ghesquier V; Decroocq J; Mazed F; Lambert M; Andrianteranagna M; Viollet B; Auberger P; Lane AA; Sujobert P; Bouscary D; Sarry JE; Tamburini J
    Cell Rep; 2022 Jan; 38(1):110197. PubMed ID: 34986346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition.
    Jacque N; Ronchetti AM; Larrue C; Meunier G; Birsen R; Willems L; Saland E; Decroocq J; Maciel TT; Lambert M; Poulain L; Hospital MA; Sujobert P; Joseph L; Chapuis N; Lacombe C; Moura IC; Demo S; Sarry JE; Recher C; Mayeux P; Tamburini J; Bouscary D
    Blood; 2015 Sep; 126(11):1346-56. PubMed ID: 26186940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia.
    He L; Arnold C; Thoma J; Rohde C; Kholmatov M; Garg S; Hsiao CC; Viol L; Zhang K; Sun R; Schmidt C; Janssen M; MacRae T; Huber K; Thiede C; Hébert J; Sauvageau G; Spratte J; Fluhr H; Aust G; Müller-Tidow C; Niehrs C; Pereira G; Hamann J; Tanaka M; Zaugg JB; Pabst C
    EMBO Mol Med; 2022 Apr; 14(4):e14990. PubMed ID: 35253392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells.
    Stevens BM; Jones CL; Pollyea DA; Culp-Hill R; D'Alessandro A; Winters A; Krug A; Abbott D; Goosman M; Pei S; Ye H; Gillen AE; Becker MW; Savona MR; Smith C; Jordan CT
    Nat Cancer; 2020 Dec; 1(12):1176-1187. PubMed ID: 33884374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extinguishing the Embers: Targeting AML Metabolism.
    Culp-Hill R; D'Alessandro A; Pietras EM
    Trends Mol Med; 2021 Apr; 27(4):332-344. PubMed ID: 33121874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells.
    Nechiporuk T; Kurtz SE; Nikolova O; Liu T; Jones CL; D'Alessandro A; Culp-Hill R; d'Almeida A; Joshi SK; Rosenberg M; Tognon CE; Danilov AV; Druker BJ; Chang BH; McWeeney SK; Tyner JW
    Cancer Discov; 2019 Jul; 9(7):910-925. PubMed ID: 31048320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Flexibility in Leukemia-Adapt or Die.
    Nachmias B; Schimmer AD
    Cancer Cell; 2018 Nov; 34(5):695-696. PubMed ID: 30423291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Venetoclax Synergistically Enhances the Anti-leukemic Activity of Vosaroxin Against Acute Myeloid Leukemia Cells Ex Vivo.
    Liu F; Knight T; Su Y; Edwards H; Wang G; Wang Y; Taub JW; Lin H; Sun L; Ge Y
    Target Oncol; 2019 Jun; 14(3):351-364. PubMed ID: 31115744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response.
    Sharon D; Cathelin S; Mirali S; Di Trani JM; Yanofsky DJ; Keon KA; Rubinstein JL; Schimmer AD; Ketela T; Chan SM
    Sci Transl Med; 2019 Oct; 11(516):. PubMed ID: 31666400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II.
    Jones CL; Stevens BM; D'Alessandro A; Culp-Hill R; Reisz JA; Pei S; Gustafson A; Khan N; DeGregori J; Pollyea DA; Jordan CT
    Blood; 2019 Jul; 134(4):389-394. PubMed ID: 31101624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.
    Lagadinou ED; Sach A; Callahan K; Rossi RM; Neering SJ; Minhajuddin M; Ashton JM; Pei S; Grose V; O'Dwyer KM; Liesveld JL; Brookes PS; Becker MW; Jordan CT
    Cell Stem Cell; 2013 Mar; 12(3):329-41. PubMed ID: 23333149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated expression of S100A8 and S100A9 correlates with resistance to the BCL-2 inhibitor venetoclax in AML.
    Karjalainen R; Liu M; Kumar A; He L; Malani D; Parsons A; Kontro M; Kallioniemi O; Porkka K; Heckman CA
    Leukemia; 2019 Oct; 33(10):2548-2553. PubMed ID: 31175323
    [No Abstract]   [Full Text] [Related]  

  • 20. Simultaneous inhibition of Sirtuin 3 and cholesterol homeostasis targets acute myeloid leukemia stem cells by perturbing fatty acid β-oxidation and inducing lipotoxicity.
    O'Brien C; Ling T; Berman JM; Culp-Hill R; Reisz JA; Rondeau V; Jahangiri S; St-Germain J; Macwan V; Astori A; Zeng A; Hong JY; Li M; Yang M; Jana S; Gamboni F; Tsao E; Liu W; Dick JE; Lin H; Melnick A; Tikhonova A; Arruda A; Minden MD; Raught B; D'Alessandro A; Jones CL
    Haematologica; 2023 Sep; 108(9):2343-2357. PubMed ID: 37021547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.