BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30423495)

  • 1. Efficacy of Cu(II) as an electron-shuttle mediator for improved bioelectricity generation and Cr(VI) reduction in microbial fuel cells.
    Li M; Zhou S
    Bioresour Technol; 2019 Feb; 273():122-129. PubMed ID: 30423495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.
    Wang Q; Huang L; Pan Y; Quan X; Li Puma G
    J Hazard Mater; 2017 Jan; 321():896-906. PubMed ID: 27745961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Utilization of Copper (Ⅱ) Wastewater for Enhancing the Treatment of Chromium (Ⅵ) Wastewater in Microbial Fuel Cells].
    Xiong XM; Wu XY; Jia HH; Yong XY; Zhou J; Wei P
    Huan Jing Ke Xue; 2017 Oct; 38(10):4262-4270. PubMed ID: 29965210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell.
    Zhang X; Liu Y; Li C
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wood carbon electrode in microbial fuel cell enhances chromium reduction and bioelectricity generation.
    Ni H; Khan A; Yang Z; Gong Y; Ali G; Liu P; Chen F; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13709-13719. PubMed ID: 34595714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production.
    Mu C; Wang L; Wang L
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of chromium, copper and vanadium combined with electricity generation in two-chambered microbial fuel cells.
    Aiyer KS
    FEMS Microbiol Lett; 2020 Aug; 367(15):. PubMed ID: 32756958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bioelectroremediation of heavy metal contaminated groundwater through advancing a self-standing cathode.
    Ali J; Zheng C; Lyu T; Oladoja NA; Lu Y; An W; Yang Y
    Water Res; 2024 Jun; 256():121625. PubMed ID: 38640565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.
    Huang L; Chen J; Quan X; Yang F
    Bioprocess Biosyst Eng; 2010 Oct; 33(8):937-45. PubMed ID: 20217142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system.
    Li M; Pan Y; Huang L; Zhang Y; Yang J
    Environ Technol; 2017 Mar; 38(5):615-628. PubMed ID: 27336289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological chromium(VI) reduction in the cathode of a microbial fuel cell.
    Tandukar M; Huber SJ; Onodera T; Pavlostathis SG
    Environ Sci Technol; 2009 Nov; 43(21):8159-65. PubMed ID: 19924938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell.
    Wang H; Long X; Zhang J; Cao X; Liu S; Li X
    Chemosphere; 2020 Feb; 241():125097. PubMed ID: 31629235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation.
    Saran C; Purchase D; Saratale GD; Saratale RG; Romanholo Ferreira LF; Bilal M; Iqbal HMN; Hussain CM; Mulla SI; Bharagava RN
    Chemosphere; 2023 Jan; 312(Pt 1):137072. PubMed ID: 36336023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmentally available biowastes as substrate in microbial fuel cell for efficient chromium reduction.
    Sindhuja M; Harinipriya S; Bala AC; Ray AK
    J Hazard Mater; 2018 Aug; 355():197-205. PubMed ID: 29857224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous treatment of chromium-containing wastewater and electricity generation using a plant cathode-sediment microbial fuel cell: investigation of associated mechanism and influencing factors.
    Wu Q; Liu J; Mo W; Li Q; Wan R; Peng S
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41159-41171. PubMed ID: 36627429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of a submersible microbial fuel cell for Cr(VI) detection in water.
    Chung H; Ju WJ; Jho EH; Nam K
    Environ Monit Assess; 2016 Nov; 188(11):613. PubMed ID: 27730460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TiO
    Shan Y; Cui J; Liu Y; Zhao W
    Environ Res; 2020 Nov; 190():110010. PubMed ID: 32763281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.
    Xafenias N; Zhang Y; Banks CJ
    Environ Sci Technol; 2013 May; 47(9):4512-20. PubMed ID: 23517384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.