These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30423506)

  • 1. Planar conformity of movements in 3D reaching tasks for persons with Multiple Sclerosis.
    Xydas E; Louca LS
    Hum Mov Sci; 2018 Dec; 62():221-234. PubMed ID: 30423506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.
    Wisneski KJ; Johnson MJ
    J Neuroeng Rehabil; 2007 Mar; 4():7. PubMed ID: 17381842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components.
    Carpinella I; Cattaneo D; Bertoni R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):351-60. PubMed ID: 22623407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS.
    Feys P; Coninx K; Kerkhofs L; De Weyer T; Truyens V; Maris A; Lamers I
    J Neuroeng Rehabil; 2015 Jul; 12():60. PubMed ID: 26202325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constraint-Induced Movement Therapy in multiple sclerosis: Safety and three-dimensional kinematic analysis of upper limb activity. A randomized single-blind pilot study.
    de Sire A; Bigoni M; Priano L; Baudo S; Solaro C; Mauro A
    NeuroRehabilitation; 2019; 45(2):247-254. PubMed ID: 31498137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of upper limb motor function in patients with multiple sclerosis using the Virtual Peg Insertion Test: a pilot study.
    Lambercy O; Fluet MC; Lamers I; Kerkhofs L; Feys P; Gassert R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650494. PubMed ID: 24187309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating upper limb impairments in multiple sclerosis by exposure to different mechanical environments.
    Pellegrino L; Coscia M; Muller M; Solaro C; Casadio M
    Sci Rep; 2018 Feb; 8(1):2110. PubMed ID: 29391520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Children with congenital spastic hemiplegia obey Fitts' Law in a visually guided tapping task.
    Smits-Engelsman BC; Rameckers EA; Duysens J
    Exp Brain Res; 2007 Mar; 177(4):431-9. PubMed ID: 17019607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results.
    Carpinella I; Cattaneo D; Abuarqub S; Ferrarin M
    J Rehabil Med; 2009 Nov; 41(12):966-70. PubMed ID: 19841825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of increased neuromotor noise for reaching movements in persons with stroke.
    McCrea PH; Eng JJ
    Exp Brain Res; 2005 Mar; 162(1):70-7. PubMed ID: 15536551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients.
    Otaka E; Otaka Y; Kasuga S; Nishimoto A; Yamazaki K; Kawakami M; Ushiba J; Liu M
    J Neuroeng Rehabil; 2015 Aug; 12():66. PubMed ID: 26265327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional motion analysis of arm-reaching movements in healthy and hemispinalized common marmosets.
    Takemi M; Kondo T; Yoshino-Saito K; Sekiguchi T; Kosugi A; Kasuga S; Okano HJ; Okano H; Ushiba J
    Behav Brain Res; 2014 Dec; 275():259-68. PubMed ID: 25245335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic and clinical evaluation of upper limb motor performance in patients with Friedreich's Ataxia: an observational study.
    Germanotta M; Vasco G; Petrarca M; Rossi S; Carniel S; Bertini E; Cappa P; Castelli E
    J Neuroeng Rehabil; 2015 Apr; 12():41. PubMed ID: 25900021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Characterization of a Robotic Device for the Assessment of Hand Proprioceptive, Motor, and Sensorimotor Impairments.
    Zbytniewska M; Rinderknecht MD; Lambercy O; Barnobi M; Raats J; Lamers I; Feys P; Liepert J; Gassert R
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():441-446. PubMed ID: 31374669
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.