BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30423702)

  • 1. Effects of acid-alkali treatment on bioactivity and osteoinduction of porous titanium: An in vitro study.
    Yao YT; Liu S; Swain MV; Zhang XP; Zhao K; Jian YT
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():200-210. PubMed ID: 30423702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.
    Rosa AL; Crippa GE; de Oliveira PT; Taba M; Lefebvre LP; Beloti MM
    Clin Oral Implants Res; 2009 May; 20(5):472-81. PubMed ID: 19250245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinduction on acid and heat treated porous Ti metal samples in canine muscle.
    Kawai T; Takemoto M; Fujibayashi S; Akiyama H; Tanaka M; Yamaguchi S; Pattanayak DK; Doi K; Matsushita T; Nakamura T; Kokubo T; Matsuda S
    PLoS One; 2014; 9(2):e88366. PubMed ID: 24520375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium.
    Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y
    J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces.
    Zhuang XM; Zhou B; Ouyang JL; Sun HP; Wu YL; Liu Q; Deng FL
    Biomed Mater; 2014 Aug; 9(4):045001. PubMed ID: 24945708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of alkali- and heat-treated titanium and apatite-formed titanium on osteoblastic differentiation of bone marrow cells.
    Nishio K; Neo M; Akiyama H; Nishiguchi S; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2000 Dec; 52(4):652-61. PubMed ID: 11033547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapamycin/sodium hyaluronate binding on nano-hydroxyapatite coated titanium surface improves MC3T3-E1 osteogenesis.
    Liu C; Dong JY; Yue LL; Liu SH; Wan Y; Liu H; Tan WY; Guo QQ; Zhang D
    PLoS One; 2017; 12(2):e0171693. PubMed ID: 28182765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone regeneration performance of surface-treated porous titanium.
    Amin Yavari S; van der Stok J; Chai YC; Wauthle R; Tahmasebi Birgani Z; Habibovic P; Mulier M; Schrooten J; Weinans H; Zadpoor AA
    Biomaterials; 2014 Aug; 35(24):6172-81. PubMed ID: 24811260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation.
    Camargo WA; Takemoto S; Hoekstra JW; Leeuwenburgh SCG; Jansen JA; van den Beucken JJJP; Alghamdi HS
    Acta Biomater; 2017 Jul; 57():511-523. PubMed ID: 28499630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration.
    Li X; Chen T; Hu J; Li S; Zou Q; Li Y; Jiang N; Li H; Li J
    Colloids Surf B Biointerfaces; 2016 Aug; 144():265-275. PubMed ID: 27100853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Modification of Titanium with BMP-2/GDF-5 by a Heparin Linker and Its Efficacy as a Dental Implant.
    Yang DH; Moon SW; Lee DW
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28124978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of surface HA/TiO
    Chen H; Wang C; Yang X; Xiao Z; Zhu X; Zhang K; Fan Y; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1047-1056. PubMed ID: 27772704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.
    Kokubo T; Yamaguchi S
    Acta Biomater; 2016 Oct; 44():16-30. PubMed ID: 27521496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Modification of Porous Titanium Granules for Improving Bioactivity.
    Karaji ZG; Houshmand B; Faghihi S
    Int J Oral Maxillofac Implants; 2016; 31(6):1274-1280. PubMed ID: 27861652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured titanium surfaces fabricated by hydrothermal method: Influence of alkali conditions on the osteogenic performance of implants.
    Huang YZ; He SK; Guo ZJ; Pi JK; Deng L; Dong L; Zhang Y; Su B; Da LC; Zhang L; Xiang Z; Ding W; Gong M; Xie HQ
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():1-10. PubMed ID: 30423681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity of novel functionally structured titanium-ceramic composites in contact with human osteoblasts.
    Peñarrieta-Juanito GM; Costa M; Cruz M; Miranda G; Henriques B; Marques J; Magini R; Mata A; Caramês J; Silva F; Souza JCM
    J Biomed Mater Res A; 2018 Jul; 106(7):1923-1931. PubMed ID: 29575452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of extracellular signal-regulated kinase 1/2 pathway in regulating osteogenic differentiation of murine preosteoblasts MC3T3-E1 cells on roughened titanium surfaces.
    Zhuang LF; Jiang HH; Qiao SC; Appert C; Si MS; Gu YX; Lai HC
    J Biomed Mater Res A; 2012 Jan; 100(1):125-33. PubMed ID: 21997903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.