These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 30423737)
21. Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants. Khan SB; Ahmad S; Kamal T; Asiri AM; Bakhsh EM Int J Biol Macromol; 2020 Dec; 164():1087-1098. PubMed ID: 32673713 [TBL] [Abstract][Full Text] [Related]
22. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Yan W; Chen C; Wang L; Zhang D; Li AJ; Yao Z; Shi LY Carbohydr Polym; 2016 Apr; 140():66-73. PubMed ID: 26876829 [TBL] [Abstract][Full Text] [Related]
23. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Fan CM; Zhang LF; Wang SS; Wang DH; Lu LQ; Xu AW Nanoscale; 2012 Nov; 4(21):6835-40. PubMed ID: 23023220 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. Narayanan KB; Sakthivel N J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237 [TBL] [Abstract][Full Text] [Related]
25. Development of a novel nanoprobe from alginate functionlized gold nanoparticles and 3-(dansylamino)phenylboronic acid for glucose detection and enhanced 4-nitrophenol reduction. Chai Z; Ma L; Meng R; Liu S; Wang Y Carbohydr Res; 2019 Mar; 475():11-16. PubMed ID: 30769120 [TBL] [Abstract][Full Text] [Related]
26. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams. Aromal SA; Babu KV; Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():1025-30. PubMed ID: 22954810 [TBL] [Abstract][Full Text] [Related]
27. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Rajkumari J; Busi S; Vasu AC; Reddy P Microb Pathog; 2017 Jun; 107():261-269. PubMed ID: 28377235 [TBL] [Abstract][Full Text] [Related]
28. The significant impact of polydopamine on the catalytic performance of the carried Au nanoparticles. Ma A; Xie Y; Xu J; Zeng H; Xu H Chem Commun (Camb); 2015 Jan; 51(8):1469-71. PubMed ID: 25494408 [TBL] [Abstract][Full Text] [Related]
29. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis. Li N; Zhao P; Liu N; Echeverria M; Moya S; Salmon L; Ruiz J; Astruc D Chemistry; 2014 Jul; 20(27):8363-9. PubMed ID: 24891131 [TBL] [Abstract][Full Text] [Related]
30. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
31. Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. Begum R; Farooqi ZH; Butt Z; Wu Q; Wu W; Irfan A J Environ Sci (China); 2018 Oct; 72():43-52. PubMed ID: 30244750 [TBL] [Abstract][Full Text] [Related]
32. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. Megarajan S; Ayaz Ahmed KB; Rajendra Kumar Reddy G; Suresh Kumar P; Anbazhagan V J Photochem Photobiol B; 2016 Feb; 155():7-12. PubMed ID: 26722997 [TBL] [Abstract][Full Text] [Related]
33. Enhanced photocatalytic degradation of organic pollutants by green-synthesized gold nanoparticles using polysaccharide for environmental remediation. Nagaraja K; Arunpandian M; Tae Hwan OH Int J Biol Macromol; 2024 Jun; 269(Pt 1):131866. PubMed ID: 38670190 [TBL] [Abstract][Full Text] [Related]
34. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. Nguyen TT; Vo TT; Nguyen BN; Nguyen DT; Dang VS; Dang CH; Nguyen TD Environ Sci Pollut Res Int; 2018 Dec; 25(34):34247-34261. PubMed ID: 30291612 [TBL] [Abstract][Full Text] [Related]
35. Controlled Light-Mediated Preparation of Gold Nanoparticles by a Norrish Type I Reaction of Photoactive Polymers. Mäsing F; Mardyukov A; Doerenkamp C; Eckert H; Malkus U; Nüsse H; Klingauf J; Studer A Angew Chem Int Ed Engl; 2015 Oct; 54(43):12612-7. PubMed ID: 26315137 [TBL] [Abstract][Full Text] [Related]
36. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Baruah B; Gabriel GJ; Akbashev MJ; Booher ME Langmuir; 2013 Apr; 29(13):4225-34. PubMed ID: 23461821 [TBL] [Abstract][Full Text] [Related]
37. Gold nanoparticles as electronic bridges for laccase-based biocathodes. Gutiérrez-Sánchez C; Pita M; Vaz-Domínguez C; Shleev S; De Lacey AL J Am Chem Soc; 2012 Oct; 134(41):17212-20. PubMed ID: 23004683 [TBL] [Abstract][Full Text] [Related]
38. Very Green Photosynthesis of Gold Nanoparticles by a Living Aquatic Plant: Photoreduction of Au Mukhoro OC; Roos WD; Jaffer M; Bolton JJ; Stillman MJ; Beukes DR; Antunes E Chemistry; 2018 Feb; 24(7):1657-1666. PubMed ID: 29164714 [TBL] [Abstract][Full Text] [Related]
39. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Pei X; Qu Y; Shen W; Li H; Zhang X; Li S; Zhang Z; Li X Environ Sci Pollut Res Int; 2017 Sep; 24(27):21649-21659. PubMed ID: 28752308 [TBL] [Abstract][Full Text] [Related]
40. Covalent laccase immobilization on the surface of poly(vinylidene fluoride) polymer membrane for enhanced biocatalytic removal of dyes pollutants from aqueous environment. Zhu Y; Qiu F; Rong J; Zhang T; Mao K; Yang D Colloids Surf B Biointerfaces; 2020 Jul; 191():111025. PubMed ID: 32305624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]