These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 30423747)

  • 21. A Novel Approach by Spark Plasma Sintering to the Improvement of Mechanical Properties of Titanium Carbonitride-Reinforced Alumina Ceramics.
    Szutkowska M; Podsiadło M; Sadowski T; Figiel P; Boniecki M; Pietras D; Polczyk T
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33802397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical and biological properties of Ti-(0-25 wt%)Nb alloys for biomedical implants application.
    Zhang Y; Sun D; Cheng J; Tsoi JKH; Chen J
    Regen Biomater; 2020 Feb; 7(1):119-127. PubMed ID: 32153995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-cost powder metallurgy Ti-Cu alloys as a potential antibacterial material.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Jul; 95():232-239. PubMed ID: 31035037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications.
    Biesiekierski A; Lin J; Li Y; Ping D; Yamabe-Mitarai Y; Wen C
    Acta Biomater; 2016 Mar; 32():336-347. PubMed ID: 26689463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility of new Ti-Nb-Ta base alloys.
    Hussein AH; Gepreel MA; Gouda MK; Hefnawy AM; Kandil SH
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():574-8. PubMed ID: 26838885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.
    Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():400-407. PubMed ID: 25686965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical corrosion behavior and mechanical properties of Ti-Ag biomedical alloys obtained by two powder metallurgy processing routes.
    Zambrano Carrullo JC; Dalmau Borrás A; Amigó Borrás V; Navarro-Laboulais J; Pereira Falcón JC
    J Mech Behav Biomed Mater; 2020 Dec; 112():104063. PubMed ID: 32911226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of annealing temperature on the properties of powder metallurgy processed Ti-35Nb-2Zr-0.5O alloy.
    Málek J; Hnilica F; Veselý J; Smola B; Medlín R
    J Mech Behav Biomed Mater; 2017 Nov; 75():252-261. PubMed ID: 28756286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alloy Design and Fabrication of Duplex Titanium-Based Alloys by Spark Plasma Sintering for Biomedical Implant Applications.
    Ijaz MF; Alharbi HF; Bahri YA; Sherif EM
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus.
    Miura K; Yamada N; Hanada S; Jung TK; Itoi E
    Acta Biomater; 2011 May; 7(5):2320-6. PubMed ID: 21316491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.
    Knaislová A; Novák P; Cygan S; Jaworska L; Cabibbo M
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.
    Wang X; Chen Y; Xu L; Xiao S; Kong F; Woo KD
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2074-80. PubMed ID: 22098907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.