BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30423763)

  • 1. Gradient platform for combinatorial screening of thermoset polymers for biomedical applications.
    Dasgupta Q; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():766-777. PubMed ID: 30423763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library.
    Metter RB; Ifkovits JL; Hou K; Vincent L; Hsu B; Wang L; Mauck RL; Burdick JA
    Acta Biomater; 2010 Apr; 6(4):1219-26. PubMed ID: 19853066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ε-caprolactone-
    Fuoco T; Ahlinder A; Jain S; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Jan; 21(1):188-198. PubMed ID: 31549825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of osteoconductive and biodegradable polymers from a combinatorial polymer library.
    Brey DM; Chung C; Hankenson KD; Garino JP; Burdick JA
    J Biomed Mater Res A; 2010 May; 93(2):807-16. PubMed ID: 20198696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun composite PLLA/Oyster shell scaffold enhances proliferation and osteogenic differentiation of stem cells.
    Didekhani R; Sohrabi MR; Seyedjafari E; Soleimani M; Hanaee-Ahvaz H
    Biologicals; 2018 Jul; 54():33-38. PubMed ID: 29871790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE
    Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds.
    Vatankhah E; Semnani D; Prabhakaran MP; Tadayon M; Razavi S; Ramakrishna S
    Acta Biomater; 2014 Feb; 10(2):709-21. PubMed ID: 24075888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning and crosslinking of low-molecular-weight poly(trimethylene carbonate-co-(L)-lactide) as an elastomeric scaffold for vascular engineering.
    Dargaville BL; Vaquette C; Rasoul F; Cooper-White JJ; Campbell JH; Whittaker AK
    Acta Biomater; 2013 Jun; 9(6):6885-97. PubMed ID: 23416575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering.
    Natarajan J; Movva S; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():534-547. PubMed ID: 28532063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration.
    Ostrowska B; Di Luca A; Szlazak K; Moroni L; Swieszkowski W
    J Biomed Mater Res A; 2016 Apr; 104(4):991-1001. PubMed ID: 26749200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial approach to develop tailored biodegradable poly(xylitol dicarboxylate) polyesters.
    Dasgupta Q; Chatterjee K; Madras G
    Biomacromolecules; 2014 Nov; 15(11):4302-13. PubMed ID: 25322446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds.
    Mohan N; Nair PD; Tabata Y
    J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.