These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30424054)

  • 1. Design, Fabrication, and Performance Characterization of LTCC-Based Capacitive Accelerometers.
    Liu H; Fang R; Miao M; Zhang Y; Yan Y; Tang X; Lu H; Jin Y
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-performance LC wireless passive pressure sensor fabricated using low-temperature co-fired ceramic (LTCC) technology.
    Li C; Tan Q; Xue C; Zhang W; Li Y; Xiong J
    Sensors (Basel); 2014 Dec; 14(12):23337-47. PubMed ID: 25490593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.
    Tan Q; Luo T; Xiong J; Kang H; Ji X; Zhang Y; Yang M; Wang X; Xue C; Liu J; Zhang W
    Sensors (Basel); 2014 Mar; 14(3):4154-66. PubMed ID: 24594610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive Wireless LC Proximity Sensor Based on LTCC Technology.
    Ma M; Wang Y; Liu F; Zhang F; Liu Z; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrications and Performance of Wireless LC Pressure Sensors through LTCC Technology.
    Lin L; Ma M; Zhang F; Liu F; Liu Z; Li Y
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29370099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An LC Wireless Microfluidic Sensor Based on Low Temperature Co-Fired Ceramic (LTCC) Technology.
    Liang Y; Ma M; Zhang F; Liu F; Liu Z; Wang D; Li Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Packaging of CMUT Using Low Temperature Co-Fired Ceramic.
    Yildiz F; Matsunaga T; Haga Y
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers.
    Mohammed Z; Elfadel IAM; Rasras M
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30453536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.
    Jiang B; Haber J; Renken A; Muralt P; Kiwi-Minsker L; Maeder T
    Lab Chip; 2015 Jan; 15(2):563-74. PubMed ID: 25422101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications.
    Li Z; Wu WJ; Zheng PP; Liu JQ; Fan J; Tu LC
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.
    Asano S; Muroyama M; Nakayama T; Hata Y; Nonomura Y; Tanaka S
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A MEMS Micro-g Capacitive Accelerometer Based on Through-Silicon-Wafer-Etching Process.
    Rao K; Wei X; Zhang S; Zhang M; Hu C; Liu H; Tu LC
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31181589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust Fully-Integrated Digital-Output Inductive CMOS-MEMS Accelerometer with Improved Inductor Quality Factor.
    Chiu Y; Liu HW; Hong HC
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31752207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing, installation, commissioning, and first results with the 3D low-temperature co-fired ceramic high-frequency magnetic sensors on the Tokamak à Configuration Variable.
    Testa D; ;
    Rev Sci Instrum; 2020 Aug; 91(8):081401. PubMed ID: 32872948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polymeric piezoelectric MEMS accelerometer with high sensitivity, low noise density, and an innovative manufacturing approach.
    Ge C; Cretu E
    Microsyst Nanoeng; 2023; 9():151. PubMed ID: 38033989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D LTCC-Based Ceramic Microfluidic System with RF Dielectric Heating of Liquids.
    Makarovič K; Belavič D; Vidmar M; Malič B
    Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a fully differential MEMS accelerometer fabricated using MetalMUMPs technology.
    Qu P; Qu H
    Sensors (Basel); 2013 May; 13(5):5720-36. PubMed ID: 23645109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the Frequency-Dependent Vibration Rectification Error in Area-Variation-Based Capacitive MEMS Accelerometers.
    Zhang S; Li Z; Wang Q; Yang Y; Wang Y; He W; Liu J; Tu L; Liu H
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.
    Halonen N; Kilpijärvi J; Sobocinski M; Datta-Chaudhuri T; Hassinen A; Prakash SB; Möller P; Abshire P; Kellokumpu S; Lloyd Spetz A
    Beilstein J Nanotechnol; 2016; 7():1871-1877. PubMed ID: 28144536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 4 mm² Double Differential Torsional MEMS Accelerometer Based on a Double-Beam Configuration.
    Miao T; Xiao D; Li Q; Hou Z; Wu X
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28974039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.