These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30424059)
1. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography. Kim YT; Castro K; Bhattacharjee N; Folch A Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424059 [TBL] [Abstract][Full Text] [Related]
2. Partitioning of hydrogels in 3D-printed microchannels. Kim YT; Bohjanen S; Bhattacharjee N; Folch A Lab Chip; 2019 Sep; 19(18):3086-3093. PubMed ID: 31502633 [TBL] [Abstract][Full Text] [Related]
3. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography. Kim YT; Ahmadianyazdi A; Folch A Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643 [TBL] [Abstract][Full Text] [Related]
4. High-Precision Stereolithography of Biomicrofluidic Devices. Kuo AP; Bhattacharjee N; Lee YS; Castro K; Kim YT; Folch A Adv Mater Technol; 2019 Jun; 4(6):. PubMed ID: 32490168 [TBL] [Abstract][Full Text] [Related]
5. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components. Ahmed I; Sullivan K; Priye A Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047 [TBL] [Abstract][Full Text] [Related]
7. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907 [TBL] [Abstract][Full Text] [Related]
9. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks. Zhang R; Larsen NB Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271 [TBL] [Abstract][Full Text] [Related]
10. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134 [TBL] [Abstract][Full Text] [Related]
11. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip. Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097 [TBL] [Abstract][Full Text] [Related]
12. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties. Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459 [TBL] [Abstract][Full Text] [Related]
13. Research on Integrated 3D Printing of Microfluidic Chips. Wu C; Sun J; Yin B Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512613 [TBL] [Abstract][Full Text] [Related]
14. 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation. Shan H; Lin Q; Wang D; Sun X; Quan B; Chen X; Chen Z Front Bioeng Biotechnol; 2021; 9():773705. PubMed ID: 34708031 [TBL] [Abstract][Full Text] [Related]
15. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices. Kotz F; Risch P; Helmer D; Rapp BE Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels. Lade RK; Hippchen EJ; Macosko CW; Francis LF Langmuir; 2017 Mar; 33(12):2949-2964. PubMed ID: 28274121 [TBL] [Abstract][Full Text] [Related]
17. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices. Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing Solutions for Microfluidic Chip-To-World Connections. van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347 [TBL] [Abstract][Full Text] [Related]
19. Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation. Weigel N; Männel MJ; Thiele J ACS Appl Mater Interfaces; 2021 Jul; 13(26):31086-31101. PubMed ID: 34176257 [TBL] [Abstract][Full Text] [Related]