These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30424091)

  • 1. A Microfluidic Chip with Double-Slit Arrays for Enhanced Capture of Single Cells.
    Xu J; Chen S; Wang D; Jiang Y; Hao M; Du G; Ba D; Lin Q; Mei Q; Ning Y; Su D; Liu K
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Cell Trapping for Single-Cell Analysis.
    Deng B; Wang H; Tan Z; Quan Y
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31248148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Retrieval of Individual Cells from Microfluidic Arrays Combining Dielectrophoretic Force and Directed Hydrodynamic Flow.
    Thiriet PE; Pezoldt J; Gambardella G; Keim K; Deplancke B; Guiducci C
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32244902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device enabling high-efficiency single cell trapping.
    Jin D; Deng B; Li JX; Cai W; Tu L; Chen J; Wu Q; Wang WH
    Biomicrofluidics; 2015 Jan; 9(1):014101. PubMed ID: 25610513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streamline based design guideline for deterministic microfluidic hydrodynamic single cell traps.
    Guan A; Shenoy A; Smith R; Li Z
    Biomicrofluidics; 2015 Mar; 9(2):024103. PubMed ID: 25825618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Method for Fabricating Microfluidic Chip Integrated with Microwell Arrays for Cell Trapping.
    Wu H; Ge Z; Yang W; Wang X; Wang X; Yu H
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31731448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Low Shear Flow-based Trapping of Biological Entities.
    Sohrabi Kashani A; Packirisamy M
    Sci Rep; 2019 Apr; 9(1):5511. PubMed ID: 30940862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Resistance-Based Microfluidic Chip for Deterministic Single Cell Trapping Followed by Immunofluorescence Staining.
    Sun X; Li B; Li W; Ren X; Su N; Li R; Li J; Huang Q
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic chip with double-sided herringbone microstructures for enhanced capture of rare tumor cells.
    Wang M; Wang Z; Zhang M; Guo W; Li N; Deng Y; Shi Q
    J Mater Chem B; 2017 Dec; 5(46):9114-9120. PubMed ID: 32264592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time Sequential Single-Cell Patterning with High Efficiency and High Density.
    Liu Y; Ren D; Ling X; Liang W; Li J; You Z; Yalikun Y; Tanaka Y
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30380644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Analysis of Hydrodynamic Flow in Microfluidic Biochip for Single-Cell Trapping Application.
    Khalili AA; Ahmad MR
    Int J Mol Sci; 2015 Nov; 16(11):26770-85. PubMed ID: 26569218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Controllable, Centrifugal-Based Hydrodynamic Microfluidic Chip for Cell-Pairing and Studying Long-Term Communications between Single Cells.
    Li L; Wang H; Huang L; Michael SA; Huang W; Wu H
    Anal Chem; 2019 Dec; 91(24):15908-15914. PubMed ID: 31741379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic Chip for Single-Cell Capture Based on Stagnation Point Flow and Boundary Effects.
    Cheng L; Lv X; Zhou W; Li H; Yang Q; Chen X; Wu Y
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of microfluidic microsphere-trap arrays.
    Xu X; Sarder P; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(1):14112. PubMed ID: 24404004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulations of hydrodynamic trapping in microfluidic particle-trap array systems.
    Xu X; Li Z; Nehorai A
    Biomicrofluidics; 2013; 7(5):54108. PubMed ID: 24404071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Objective Design Automation for Microfluidic Capture Chips.
    Chen L; Grover WH; Sridharan M; Brisk P
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):467-479. PubMed ID: 36197858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic platform for trapping, releasing and super-resolution imaging of single cells.
    Zhou Y; Basu S; Wohlfahrt KJ; Lee SF; Klenerman D; Laue ED; Seshia AA
    Sens Actuators B Chem; 2016 Sep; 232():680-691. PubMed ID: 27594767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.