These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30424097)

  • 1. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing.
    Zuo Y; Zhu X; Shi Y; Liang L; Yang Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber Optofluidic Technology Based on Optical Force and Photothermal Effects.
    Zhang C; Xu B; Gong C; Luo J; Zhang Q; Gong Y
    Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation optofluidics for large-angle light bending and tuning.
    Yang Y; Chin LK; Tsai JM; Tsai DP; Zheludev NI; Liu AQ
    Lab Chip; 2012 Oct; 12(19):3785-90. PubMed ID: 22868356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic systems enabling detection in real samples: A review.
    Fernandez-Cuesta I; Llobera A; Ramos-Payán M
    Anal Chim Acta; 2022 Feb; 1192():339307. PubMed ID: 35057965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic Tunable Lenses for In-Plane Light Manipulation.
    Chen Q; Li T; Li Z; Long J; Zhang X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic integration for microanalysis.
    Hunt HC; Wilkinson JS
    Microfluid Nanofluidics; 2008; 4(1):53-79. PubMed ID: 32214954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic approaches for enhanced microsensor performances.
    Testa G; Persichetti G; Bernini R
    Sensors (Basel); 2014 Dec; 15(1):465-84. PubMed ID: 25558989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On chip optofluidic low-pressure monitoring device.
    Chandra Roy A; Bangalore Subramanya S; Manohar Rudresh S; Venkataraman V
    J Biophotonics; 2021 Mar; 14(3):e202000381. PubMed ID: 33169514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities.
    Zhang YN; Zhao Y; Zhou T; Wu Q
    Lab Chip; 2017 Dec; 18(1):57-74. PubMed ID: 29125166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection.
    Huang NT; Zhang HL; Chung MT; Seo JH; Kurabayashi K
    Lab Chip; 2014 Apr; 14(7):1230-45. PubMed ID: 24525555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic bioanalysis: fundamentals and applications.
    Ozcelik D; Cai H; Leake KD; Hawkins AR; Schmidt H
    Nanophotonics; 2017 Jul; 6(4):647-661. PubMed ID: 29201591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roadmap on optical sensors.
    Ferreira MFS; Castro-Camus E; Ottaway DJ; López-Higuera JM; Feng X; Jin W; Jeong Y; Picqué N; Tong L; Reinhard BM; Pellegrino PM; Méndez A; Diem M; Vollmer F; Quan Q
    J Opt; 2017 Aug; 19(8):. PubMed ID: 29375751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-written photonic crystal optofluidics for electrochromatography and spectroscopy on a chip.
    Haque M; Zacharia NS; Ho S; Herman PR
    Biomed Opt Express; 2013; 4(8):1472-85. PubMed ID: 24010009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Tunable Lenses for Imaging and Light Manipulation.
    Chen L; Liang S; Chen Z; Liang X; Chen Q
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.
    Yang Y; Liu AQ; Chin LK; Zhang XM; Tsai DP; Lin CL; Lu C; Wang GP; Zheludev NI
    Nat Commun; 2012 Jan; 3():651. PubMed ID: 22337129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.