These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 30424098)

  • 1. PDMS-PDMS Micro Channels Filled with Phase-Change Material for Chip Cooling.
    Liu Z; Qin S; Chen X; Chen D; Wang F
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond.
    Waheed S; Cabot JM; Macdonald NP; Kalsoom U; Farajikhah S; Innis PC; Nesterenko PN; Lewis TW; Breadmore MC; Paull B
    Sci Rep; 2017 Nov; 7(1):15109. PubMed ID: 29118385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Silicon Mold Process for Polydimethylsiloxane Microchannels.
    Yang LJ; Shaik S; Unnam NK; Muthuraman V
    Micromachines (Basel); 2024 Jun; 15(7):. PubMed ID: 39064358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-heater flow-through polymerase chain reaction device by heat pipes cooling.
    Chen JJ; Liao MH; Li KT; Shen CM
    Biomicrofluidics; 2015 Jan; 9(1):014107. PubMed ID: 25713689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabrication Process Development for a Polymer-Based Lab-on-Chip Concept Applied in Attenuated Total Reflection Fourier Transform Infrared Spectroelectrochemistry.
    Atkinson N; Morhart TA; Wells G; Flaman GT; Petro E; Read S; Rosendahl SM; Burgess IJ; Achenbach S
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a Three-Layer PDMS Pneumatic Microfluidic Chip for Micro Liquid Sample Operation.
    Liu X; Li S
    SLAS Technol; 2020 Apr; 25(2):151-161. PubMed ID: 31425005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Piezoelectric AlN Thin Film with SU-8/PDMS Supporting Layer for Flexible Sensor Array.
    Yeo HG; Jung J; Sim M; Jang JE; Choi H
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoplastic Elastomer (TPE)-Poly(Methyl Methacrylate) (PMMA) Hybrid Devices for Active Pumping PDMS-Free Organ-on-a-Chip Systems.
    Busek M; Nøvik S; Aizenshtadt A; Amirola-Martinez M; Combriat T; Grünzner S; Krauss S
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34069506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening.
    Tang Q; Li X; Lai C; Li L; Wu H; Wang Y; Shi X
    Bioact Mater; 2021 Jan; 6(1):169-178. PubMed ID: 32913926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary-Assisted Evaporation/Boiling in PDMS Microchannel Integrated with Wicking Microstructures.
    Li W; Joshi Y
    Langmuir; 2020 Oct; 36(41):12143-12149. PubMed ID: 32877610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates.
    Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing.
    Karimi S; Mehrdel P; Casals-Terré J; Farré-Llados J
    Biofabrication; 2020 Feb; 12(2):025021. PubMed ID: 31891916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.
    Tsao CW; Lee YP
    Sci Technol Adv Mater; 2016; 17(1):2-11. PubMed ID: 27877852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of a Chemical-Free Metal PDMS Thermal Bonding for Fabrication of Flexible Electrode by Metal Transfer onto PDMS.
    Koh D; Wang A; Schneider P; Bosinski B; Oh KW
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost and versatile integration of microwire electrodes and optical waveguides into silicone elastomeric devices using modified xurographic methods.
    Liu J; Mahony JB; Selvaganapathy PR
    Microsyst Nanoeng; 2017; 3():17040. PubMed ID: 31057875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors.
    Hoera C; Ohla S; Shu Z; Beckert E; Nagl S; Belder D
    Anal Bioanal Chem; 2015 Jan; 407(2):387-96. PubMed ID: 25377779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.