These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 30424104)
1. Spiral Microchannels with Trapezoidal Cross Section Fabricated by Femtosecond Laser Ablation in Glass for the Inertial Separation of Microparticles. Al-Halhouli A; Al-Faqheri W; Alhamarneh B; Hecht L; Dietzel A Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424104 [TBL] [Abstract][Full Text] [Related]
2. Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section. Al-Halhouli A; Albagdady A; Dietzel A RSC Adv; 2019 Dec; 9(71):41970-41976. PubMed ID: 35541623 [TBL] [Abstract][Full Text] [Related]
3. Enhanced inertial focusing of microparticles and cells by integrating trapezoidal microchambers in spiral microfluidic channels. Al-Halhouli A; Albagdady A; Al-Faqheri W; Kottmeier J; Meinen S; Frey LJ; Krull R; Dietzel A RSC Adv; 2019 Jun; 9(33):19197-19204. PubMed ID: 35516901 [TBL] [Abstract][Full Text] [Related]
4. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation. Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843 [TBL] [Abstract][Full Text] [Related]
5. High-Efficiency Small Sample Microparticle Fractionation on a Femtosecond Laser-Machined Microfluidic Disc. Al-Halhouli A; Doofesh Z; Albagdady A; Dietzel A Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32019235 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Liao Y; Ju Y; Zhang L; He F; Zhang Q; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K Opt Lett; 2010 Oct; 35(19):3225-7. PubMed ID: 20890341 [TBL] [Abstract][Full Text] [Related]
7. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. Petruzzellis I; Martínez Vázquez R; Caragnano S; Gaudiuso C; Osellame R; Ancona A; Volpe A Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337795 [TBL] [Abstract][Full Text] [Related]
8. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation. Tabatabaei SA; Zabetian Targhi M Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing of Inertial Microfluidic Devices. Razavi Bazaz S; Rouhi O; Raoufi MA; Ejeian F; Asadnia M; Jin D; Ebrahimi Warkiani M Sci Rep; 2020 Apr; 10(1):5929. PubMed ID: 32246111 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Spiral Low-Cost Microchannel with Trapezoidal Cross Section for Cell Separation Using a Grayscale Approach. Adel M; Allam A; Sayour AE; Ragai HF; Umezu S; Fath El-Bab AMR Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512651 [TBL] [Abstract][Full Text] [Related]
11. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J Sci Rep; 2013; 3():1475. PubMed ID: 23502529 [TBL] [Abstract][Full Text] [Related]
12. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Bhagat AA; Kuntaegowdanahalli SS; Papautsky I Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692 [TBL] [Abstract][Full Text] [Related]
13. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126 [TBL] [Abstract][Full Text] [Related]
14. Differential Sorting of Microparticles Using Spiral Microchannels with Elliptic Configurations. Erdem K; Ahmadi VE; Kosar A; Kuddusi L Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295138 [TBL] [Abstract][Full Text] [Related]
15. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238 [TBL] [Abstract][Full Text] [Related]
16. 3D-Stacked Multistage Inertial Microfluidic Chip for High-Throughput Enrichment of Circulating Tumor Cells. Xu X; Huang X; Sun J; Chen J; Wu G; Yao Y; Zhou N; Wang S; Sun L Cyborg Bionic Syst; 2022; 2022():9829287. PubMed ID: 38645277 [TBL] [Abstract][Full Text] [Related]
17. An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing. Yalikun Y; Hosokawa Y; Iino T; Tanaka Y Lab Chip; 2016 Jul; 16(13):2427-33. PubMed ID: 27225521 [TBL] [Abstract][Full Text] [Related]
18. Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application. Shan C; Zhang C; Liang J; Yang Q; Bian H; Yong J; Hou X; Chen F Opt Express; 2020 Aug; 28(18):25716-25722. PubMed ID: 32906856 [TBL] [Abstract][Full Text] [Related]
19. Ultra-low-cost fabrication of polymer-based microfluidic devices with diode laser ablation. Gao K; Liu J; Fan Y; Zhang Y Biomed Microdevices; 2019 Aug; 21(4):83. PubMed ID: 31418064 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing. Owusu-Ansah E; Dalton C Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]